1. 简述camp信号通路的组成及传导过程。
该通路是由质膜上的五种成分组成:激活型受体(stimulate receptor, RS),抑制型受体(inhibite receptor, Ri),激活型和抑制型调节G蛋白(Gs和Gi)和腺苷酸环化酶(adenylate cyclase, AC)。
传导过程:当细胞没有受到激素刺激,Gs处于非活化态,α亚基与GDP结合,此时腺苷酸环化酶没有活性;当激素配体与Rs结合后,导致Rs构象改变,暴露出与Gs结合的位点,使激素-受体复合物与Gs结合,
Gs的α亚基构象改变,从而排斥GDP,结合GTP而活化,使三聚体Gs蛋白解离出α亚基和βγ基复合物,并暴露出α亚基与腺苷酸环化酶的结合位点;结合GTP的α亚基与腺苷酸环化酶结合,使之活化,并将ATP转化为CAMP。
随着GTP的水解α亚基恢复原来的构象并导致与腺苷酸环化酶解离,终止腺苷酸环化酶的活化作用。α亚基与βγ亚基重新结合,使细胞回复到静止状态。
(1)长寿信号通路扩展阅读
CAMP信号通路(cAMP signal pathway)在CAMP信号通路中,Gα亚基的首要效应酶是腺苷酸环化酶(adenylyl cyclase AC),通过腺苷酸环化酶活性的变化调节靶细胞内第二信使CAMP的水平,进而影响信号通路的下游事件。
以cAMP为第二信使的信号通路的主要效应是通过活化cAMP依赖的PKA使下游靶蛋白磷酸化,从而影响细胞代谢和细胞行为,这是细胞快速应答胞外信号的过程。此外,还有一类细胞缓慢应答胞外信号的过程,就是cAMP信号通路对细胞基因表达的影响。
2. 如何研究基因调控信号通路
代谢通路:目前在通路数据库(PATHWAY database) 中代谢通路是建立得最好的,有大约90个参考代谢途径的图形。每个参考代谢途径是一个由酶或EC号组成的网络。
利用如下方法可通过计算机构建出生物体特有 的代谢通路:
先根据基因的序列相似性和位置相关性确定基因组中酶的基因。
然后合理地安排EC号。
最后将基因组中的基因和参照通路中用EC号编号的基因产物 结合起来。
3. 有哪些信号通路可以促进细胞衰老
1 JAK-STAT信号通路
1) JAK与STAT蛋白
JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。
(1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor)
许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。
(2) 酪氨酸激酶JAK(Janus kinase)
很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor
tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。
(3) 转录因子STAT(signal transcer and activator of transcription) STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。
2) JAK-STAT信号通路
与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(docking site),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12却特异性激活STAT4。
2 p53信号
1) p53基因的发现
p53基因是迄今发现与肿瘤相关性最高的基因。1979年,Lane和Crawford在感染了SV40的小鼠细胞内分离获得一个与SV40大T抗原相互作用的蛋白,因其分子量为53 kDa,故而取名为p53(人的基因称为TP53)[3]。起初,p53被误认为是癌基因,直到上个世纪90年代,人们才认识到引起肿瘤形成或细胞癌变的p53蛋白是p53基因的突变产物。野生型p53基因是一种重要的抑癌基因,它是细胞生长周期中的负调节因子,在细胞周期调控、DNA损伤修复、细胞分化、凋亡和衰老等许多过程中发挥了重要的生物学功能,因而被誉为“细胞卫士”。随着研究的深入,人、猴、鸡、大鼠、非洲爪蟾和斑马鱼等多种模式动物的p53基因也相继被克隆。
其中,人类TP53基因定位于染色体17P13.1,小鼠p53基因被定位在11号染色体上,并在14号染色体上发现无功能的假基因。在这些进化程度迥异的动物中,它们的p53基因结构却异常保守,基因全长16-20kb,都由11个外显子和10个内含子组成。其中第1个外显子不编码结构域,外显子2、4、5、7、8则分别编码5个进化上高度保守的结构域,转录形成约2.5 kb的mRNA。之后,在基因同源性的基础上又陆续发现了p53家族的其它成员,分别是p73和p63,它们也因各自的分子量而得名,具有和p53相似的结构和功能。
2) p53信号通路
p53基因受多种信号因子的调控。例如:当细胞中的DNA损伤或细胞增殖异常时,p53基因被激活,导致细胞周期停滞并启动DNA修复机制,使损伤的DNA得以修复。然而,当DNA损伤过度而无法被修复时,作为转录因子的p53还可进一步激活下游促凋亡基因的转录,诱导细胞凋亡并杀死有DNA损伤的细胞。不然,这些DNA损伤的细胞就可能逐渐脱离正常的调控,有可能最终形成肿瘤。
虽然正常状态下p53的mRNA水平很高,而且有大量蛋白质合成,但p53蛋白容易降解,所以正常细胞内p53蛋白水平很低。蛋白的泛素化(ubiquitination)修饰是细胞内蛋白代谢过程中的最普通的降解方式,p53蛋白的降解也是通过泛素化来实现的。MDM2是一种特异性针对p53的泛素化E3连接酶,它可直接与p53蛋白结合来促进p53蛋白的泛素化降解,并在细胞内p53蛋白动态平衡中发挥关键的作用。MDM2本身也可被p53蛋白激活,因此MDM2是p53通路中重要的负反馈调节因子(negative feedback regulator)。
4. 什么是NO信号通路
信号通路是个很大的学问。见下图的信号通路图。
谷氨酸介导的一氧化氮(NO)的生产发生通过酸N-甲基-D-天冬氨酸(NMDA)受体的突触后密度蛋白95(PSD95)神经元型一氧化氮合酶(NOS1)三元复合物。增加细胞内Ca2+刺激nNOS和钙调蛋白(CAM)的相互作用和nNOS的translocaton从质膜到细胞质。由钙调神经磷酸酶去磷酸化的nNOS催化精氨酸,瓜氨酸和一氧化氮(NO),转苷酸环化酶和各种cGMP的监管信号通路的转换。
以下是原英文介绍:Glutamatergic-mediatednitricoxide(NO)proctionoccursviatheN-methyl-D-asparticacid(NMDA)postsynapticdensityprotein95(PSD95)-neuronalnitricoxidesynthase(NOS1)ternarycomplex.TheincreasedintracellularCa2+(CaM).etocitrullineandnitricoxide(NO),s.
在Selleck官网上搜索到的NOS1相关试剂http://www.selleckchem.com/search.jsp?searchtxt=nos1
5. rtk-ras信号通路的过程!
配体→活化酪氨酸激酶RTK→活化的酪氨酸激酶RTK 结合接头蛋白adaptor → GRF(鸟苷酸释放因子)促进GDP释放→Ras(GTP结合蛋白)活化。
诱导下游事件:Raf丝氨酸/苏氨酸蛋白激酶(又称MAPKKK)活化(使蛋白上的丝氨酸/苏氨酸残基磷酸化)→活化的Raf 结合并磷酸化另一种蛋白激酶MAPKK。
导致MAPKK 活化(MAPKK是一种具双重特异的蛋白激酶,它能磷酸化MAPK的苏氨酸和酪氨酸残基使之激活)→MAPK活化→进入细胞核→其它激酶或基因调控蛋白(转录因子)的磷酸化修饰。
(5)长寿信号通路扩展阅读:
Ras蛋白具有内在的GTP酶活性,能使GTP降解为GDP而呈失活状态,但其酶活性较低。而GTP酶激活蛋白(GAP)则能促进GTP酶活性,使Ras蛋白水解GTP的速度提高1万倍,因此也是Ras通路的重要调节因素。
另外,活化的Ras能直接结合并激活磷脂酰肌醇―3―激酶(P13K)的P110催化亚基,P13K活化后将二磷酸磷脂酰肌醇(PIP2)转化而生成第二信使三磷酸磷脂酰肌醇(PIP3),然后通过Rac/Cdc42等来调控细胞骨架运动,以及通过激活生存信号激酶PKB/AKT等靶蛋白来调控细胞生存。
另外,鸟嘌呤解离刺激因子(RalGDS)是一种Ras相关蛋白Ral的GTP/GDP交换因子(guanine exchange factor,GEF),RalGDS激活RalA/B相关小GTP酶。
RalBP,是一个GTP酶激活蛋白,它能抑制Cdc42和RacGTP酶,然后通过Rac/Cdc42调控激动蛋白细胞骨架的重组及转录因子NF―xB的活化,从而促进抗凋亡蛋白的产生来抑制细胞凋亡。
6. 信号通路的简介
信号通路(signal pathway)的提出最早可以追溯到1972年,不过那时被称为信号转换(signal transmission)。1980年,M. Rodbell在一篇综述中提到信号转导(signal transction),此后这个概念就被广泛使用了[4]。信号通路是指能将细胞外的分子信号经细胞膜传入细胞内发挥效应的一系列酶促反应通路。这些细胞外的分子信号(称为配体,ligand)包括激素、生长因子、细胞因子、神经递质以及其它小分子化合物等。当配体特异性地结合到细胞膜或细胞内的受体(receptor)后,在细胞内的信号又是如何传递的呢?
细胞内各种不同的生化反应途径都是由一系列不同的蛋白组成的,执行着不同的生理生化功能。各个信号通路中上游蛋白对下游蛋白活性的调节(包括激活或抑制作用)主要是通过添加或去除磷酸基团,从而改变下游蛋白的立体构象完成的。所以,构成信号通路的主要成员是蛋白激酶和磷酸酶,它们能够快速改变和恢复下游蛋白的构象。从细胞受体接收外界信号到最后做出综合性应答,不仅是一个信号转导过程,更重要的是将外界信号进行逐步放大的过程。受体蛋白将细胞外信号转变为细胞内信号,经信号级联放大、分散和调节,最终产生一系列综合性的细胞应答,包括下游基因表达的调节、细胞内酶活性的变化、细胞骨架构型和DNA合成的改变等(如图3)。这些变化并非都是由一种信号引起的,也可以通过几种信号的不同组合产生不同的反应。
7. 如何确定某种因子在信号传导通路的上游或下游
钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。
这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。
如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。)
其次,要证明你的药物存在保护作用。
当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。
再次,证明你的药物可以抑制P38表达。
用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。
8. 人有长寿基因吗
首先,一个人的长寿与否,是由内和外两方面综合决定的,内在的就是受遗传和表观遗传调控的衰老机制,外在的则是环境中的潜在因素。在这里我们只谈基因学的原因。要去找出这样一部分的基因,会有两种方法,第一,最便捷也是最直接的方法,就是用从大样本量的全基因组测序结果去分析。通过比较长寿和非长寿人群的基因组景观图(Genomic Landscape),找出其中有显著差异的基因;第二,是从衰老机制和信号通路去做理论推测,找出执行某些功能的基因。就第一种方法而言,获取大样本量的测序数据是一大障碍。在2015年的Nature Communication,发表了一项由多方合作的衰老基因学研究。他们做了一个大规模的Meta分析,对14983个人的全血的基因组测序结果进行了基因区别表达的分析,找出了600个与衰老正相关,以及897个与衰老负相关的基因。这1497个基因中,很大一部分的基因功能以及被人类所熟知(例如MYC, LEF1等),但是也有相当一部分衰老相关基因的发现也是全新的(例如CCDC34,DOCK10等),由于这是一项由大规模人体样本测序的研究,它相当有说服力。为了找出这些基因所调控的生物学功能网络,他们由对这个基因列表进行了通路分析(Pathway Analysis). 结果见下图。在和衰老负相关的897个基因中,它们主要可以划分为5个功能集合:核酸代谢,核糖体功能,DNA复制与修复,线粒体代谢,免疫功能。而在于衰老成正相关的600个基因中,主要可以划分为:免疫,细胞骨架形成,脂肪酸和过氧化物酶体代谢,溶酶体代谢和糖胺聚糖的降解。当然,我们也可以去进行理论上的推测,由目前已知的衰老的机制通路去找寻相关的基因。从信号通路上去找,之前的研究已经从各种模式动物身上找出了IGF-1, PI3K, TOR, MAPK, AMPk, PK, NF-kB, TGF-β, NOTCH, WNT 等信号通路对长寿的影响,这些通路主要调控了能量均衡,细胞可塑性以及生物稳态的维持等,这这些信号通路中的重要调控因子,理论上都可以认为是与长寿相关的基因。例如研究最多的IGF-1通路,在正常环境中,它可以通过调控PI3K,AKT的活性来影响细胞的增殖,在不良环境中,它又可以通过调控FOXO转录因子的活性来减少应激反应的毒性积累最后,值得一提的是,衰老还是与表观遗传学调控息息相关的一个过程。宾大的Shelley L. Berger就在2016年的一篇Cell综述里面总结了衰老的七个表观遗传学表现.组蛋白的流失;.表观遗传对激活和失活的平衡被打破;转录改变;.异染色质的失衡;.细胞核核层的破裂; 全局的低甲基化和个别位置的过甲基化;. 染色质重组。而决定人表观遗传稳定性的调控因素,也可以认为是一个可遗传的长寿原因。例如组蛋白甲基化转移酶的水平高度,可以直接决定整个染色质的被摄取率,从而决定整个基因组的转录活性。总而言之,基因的调控无处不在,更不用说是长寿这样一类研究比较充分的方向,这里的回答也是片面地提了几个点。但是在我们了解这些“长寿基因”调控衰老机制的同时,也要意识到每个人的基因组都是独一无二的,有很多问题并非用笼统的医学研究就可以解决。
9. 长寿基因的研究进展
一、心血管疾病相关基因
心血管疾病是影响中老年人群寿命中很重要的疾病。目前关于它的研究都集中在脂代谢方面。
1 、载脂蛋白E(ApoE) ApoE是唯一拥有共同变体基因表达的蛋白质,并认为其与长寿有关。它有2,3,4三种亚型,由不同的等位基因编码,并与特异的脂蛋白受体作用改变血循环中胆固醇的水平。Christensen等发现ApoE4不仅是患心血管疾病和阿尔茨海默病的高危因素,也是患者暴露于高危环境后更易受其他疾病损坏的载体,比如脑外伤后携带它的患者更易患慢性脑损伤,外周动脉粥样硬化糖尿病衰退期的患者如果携带它更易有认知上的障碍。
2、 胆固醇酯转化蛋白(cholesteryl ester transfer protein,CETP) CETP调节胆固醇酯的逆向转运和高密度脂蛋白(HDL)水平,高水平的低密度脂蛋白(LDL)和低水平的HDL是心血管疾病的高危因素。实验动物模型表明,在鼠中可以表达的CETP如果在鼠中不表达,这样的小鼠就会有高脂血症、心血管病和低存活率,该发现使CETP基因成为人类老化的关键候选基因。最近Barzilai发现,CETP基因的一个共同功能变异体同合子VV的相对频率在接近100岁的考察对象中密集度为25%,而在大约年轻30岁的人群中仅为8%。他们进一步发现CETP VV 基因型与低水平CETP和高水平LDL有关。而HDL可以降低高血压、心血管疾病和与衰老有关的代谢疾病的发生率。他们还发现高HDL水平和大的HDL颗粒可以保护认知功能,阻止因年龄的增长而产生的功能性降低,这表明HDL在保护由于老化引起的认知下降时作用比LDL更大。实际上,增高的HDL 水平(与70岁对象的颗粒大小有关)可能防止阿尔茨海默病和其他形式的痴呆。这些研究也间接证明了CETP基因作为长寿基因的可能性。
3 、微粒体甘油三酯转移蛋白(microsomal triglyceride transfer protein,MTP) 最近对两组独立的高加索长寿人群样本分析,发现MTP基因中的一个SNP在这种人群中呈高表达,MTP基因的这种变化之所以改变人类寿命,是它参与了脂类代谢的结果。但同样的结果却无法在美国人群中重复。除了脂代谢方面的研究,长寿相关基因在其他方面也有所发现,比如血管紧张素转化酶。Forero〔13〕在高加索样本不同年龄人群中发现它的突变基因型在老年人中的频率降低,而在女性中常见。另外,Listi等发现连接蛋白371019T等位基因的变异与冠状血管疾病和心肌梗死有关,在长寿人群中低表达,但在相关疾病的对照中高表达,而在年龄相关正常人的对照中则是中等水平。这些都证明了长寿基因的存在和重要作用。
二、免疫系统相关基因
在对不同国家人群作比较之后,发现白介素,干扰素(INF)这些长寿相关因子拥有人种特异性成分。受人种特异性基因池和基因环境相互作用的影响,它们所起的作用是增强存活能力,但并不能保证长寿。
1、 IL?10和肿瘤坏死因子α(TNFα)基因与长寿的关系 IL?10基因的促进区1082G?A突变对男性的长寿起很大作用,这是Lio在研究IL10或与TNFα促进区3082AG突变相互作用时发现的。IL10的作用是限制并终止炎症反应,TNF?α决定局部或系统炎症的程度、时间和效力。关于这两个细胞因子作用效果的研究很多,一般认为它们在宿主对待病原菌时起很重要的作用。但当IL10和TNFα表达量过多时又会引起自身免疫性炎症反应。研究者预言高表达的IL?10和低表达的TNF?α可以起到预防老年性疾病的作用。在研究者所做的有关老化的实验对象中发现,抗炎性基因型由于其慢性促炎性反应的作用可能在生命晚期发挥很大作用。这种他们称为“炎性老化”的现象在男性中出现的比率高,这也就可以解释实验对象中老年男性的表达量高的现象,而且它说明炎性标记可以预测相应老年组中的功能损坏和死亡,并且持续的炎性状态预示着它们可能参与到老年相关慢性疾病的致病机制中。
2、 IL6基因与长寿 Hurme发现IL6因子参与了长寿遗传的调控,在对表达它的基因进行多态性分析时还发现174G/C的SNP型在老年与年轻人的比较中有显著差异,并且174G型的人群更易长寿,但这种效应在女性中常见。这也就证明了炎性因子的数量与老年人的寿命呈负相关,并且表达这些因子的基因可能与长寿的遗传有一定关系。
3、 地中海热蛋白(Mediterranean fever protein,MEFP)与长寿 一些研究表明,携带炎性疾病易感基因的人群长寿几率很小,促炎性疾病基因型对心血管疾病来说是高危因素,而且发现通过抗炎治疗有助于长寿。Grimaldi等对MEFP基因的M694V (A2080G),M694I (G2082A)和V726A (T2177C)三种突变型进行了分析,发现只有 M694V突变型在所研究的人群中出现,而这种突变型在地中海人群中出现最频繁,而且身患炎症并同时携带MEFP 突变型的患者似乎更易患更严重的疾病,但它的突变并不增加患动脉粥样硬化的易感性而是可能影响它患病后的严重程度和复杂性。
三、代谢相关途径基因
基因对代谢相关途径的调控发挥很重要的作用,而这些途径包括胰岛素/胰岛素样生长因子-1(IGF1)信号途径,线粒体电子传递信号途径,饮食调控限制机制途径等。并且对这些激素途径的抑制可提高寿命和延缓年龄相关性功能降低。
1、胰岛素/胰岛素样生长因子受体通路(dauer formation pathway,daf pathway) Halaschek?Wiener等通过与正常模型对比,发现在C.elegans(一种线虫,作为一种成熟的模式系统用于研究与生长,生殖及老化等相关的基因功能)中的daf突变型是低代谢的,它表现在生物合成和分解代谢活性方面。daf?2突变型确实在生命周期中表达低水平的与代谢有关的转录物。实验中发现daf?2突变型和正常对照组的比较,生命周期延长,死亡发作延缓。
2、胰岛素/胰岛素样生长因子1信号途径 van Heemst发现这条途径活性的降低与女性长寿有关。在分析基因多态性时发现这条信号通路的组成部分生长因子1的多态性对提高女性寿命所起的作用最大,并且这种多态性的出现与低体重有一定关系。从以上研究可以发现,这条通路轴的调节可以在生物学上决定性别,而这可以解释在实验中发现的性别差异。
10. 如何做信号通路
从细胞膜、胞浆到细胞核,存在多条信号通路串联交叉形成的复杂信号网络。该信号网络在细胞受到胞外刺激后将信号通过级联放大、分散调节等方式传入胞内,引起一系列的综合性细胞应答。一种生物效应的出现往往存在多条信号通路的同步活化,可逆的磷酸化修饰反应则是细胞内部最为普遍和节能的信号蛋白活化调节方式。因此,找到激活的信号通路乃至发生磷酸化调变的通路蛋白,往往成生命科学研究的起点。
所以如果没有重点关注的信号通路,通常建议可以使用信号通路磷酸化广谱筛选抗体芯片(PEX100)。检测的信号蛋白广泛参与31条重要信号通路信号传导过程。芯片针对每一个特定蛋白磷酸化位点,设置一对抗体分别检测其磷酸化(Phospho)和非磷酸化(non-Phospho)状态以提高磷酸化检测灵敏度和稳定性。一次芯片实验即可实现31条信号通路的同步筛选和具体调变位点的清晰定位,为后续生物现象的深入探索提供明确的研究方向。