导航:首页 > 长寿老人 > 长寿基因指

长寿基因指

发布时间:2021-11-03 11:48:54

A. 父母中,谁的寿命对后代有影响长寿基因有哪些

1.眼睛形状:父母的眼睛形状对孩子的影响显而易见.对于孩子来讲,眼形、眼睛的大小是遗传自父母的,而且大眼睛相对小眼睛而言是显性遗传.只要父母双方有一个人是大眼睛,生大眼睛孩子的可能就会大一些. 双眼皮:一般来讲,单眼皮与双眼皮的人结婚,孩子极有可能是双眼皮.所以,一些孩子出生时是单眼皮,成年后又会“补”上像父亲那样的双眼皮.据统计,在婴幼儿中双眼皮的比例不过才20%,中学生是40%,大学生大约占到50%.但如果父母都是单眼皮,一般孩子也会是单眼皮. 眼球颜色:在眼球颜色方面,黑色等深颜色相对于浅颜色而言是显性遗传.也就是说,如果你羡慕蓝眼球,选择了一个蓝眼球人做了爱人,但因为你是黑眼球,所生的孩子不会是蓝眼球. 睫毛:长睫毛也是显性遗传的.父母双方只要有一个人拥有动人的长睫毛,孩子遗传长睫毛的可能性就非常大. 2.鼻子一般来讲,鼻子大、高而鼻孔宽的人呈显性遗传.父母双方中有一人是挺直的鼻梁,遗传给孩子的可能性就很大.另外,鼻子的遗传基因会一直持续到成年,也就是说,小时候矮鼻子的人,长到成年时期还有变成高鼻子的可能. 3.寿命寿命是有遗传基础的.我们可以看到,有些家族中的成员个个长寿,但也有短命的家族存在.寿命的长短有家族聚集的倾向性.如果你的家族中有长寿的先例,那么你的孩子长寿的可能性是很大的. 最有说服力的是对同卵双生子的调查.资料统计,60-75岁死去的双胞胎,男性双胞胎死亡的时间平均相差4年,女性双胞胎仅差2年.不过,寿命也受环境因素的影响,如饮食习惯、生活环境、工作环境等,也在不同程度上左右着人的寿命. 4.身高研究表明,人的身高有70%取决于遗传,后天因素的影响只占到30%.一般来讲,如果父母身材较高,孩子身材高的机会为3,矮的机会为1,身材偏矮则反之;如果父母中一人较高,一人较低,就取决于其他因素. 5.胖瘦人的体形有一定的遗传性.比如,我们中的一些人,吃同样的食物,有着同样的运动量,但有些人体形正常,有些人却偏胖或偏瘦.研究认为,不同的人有着不同的代谢率,通常代谢率较低的人就容易长胖,这是由于体形遗传因素而决定的.如果父母体形属于容易长胖的那种类型,孩子就容易偏胖.因此,这样的孩子在出生后,喂养上要注意营养平衡,不要吃得过多.如果父母中有一人肥胖,孩子发胖的机会是30%.如果父母双方都肥胖,孩子发胖的机会是50%-60%.另外,也有些说法,认为母亲在孩子体形方面起到的作用较大,也就是说孩子不论性别如何,都比较像母亲. 6.肤色肤色在遗传时往往不偏不倚,让人别无选择.它总是遵循着“相乘后再平均”的自然法则,给孩子打着父母“综合色”的烙印.比如,父母皮肤较黑,绝对不会有白嫩肌肤的孩子;如果父母中一个人较黑,一个人较白,那么在胚胎时“平均”后,便给孩子形成一个不黑不白的中性肤色.因此,黄种人生的孩子,一定是黄种人的肤色.一个非洲的留学生找了个肤色偏黑的中国女子,生出的孩子果然皮肤也很黑. 7.耳朵耳朵的形状是遗传的,而且大耳朵是显性遗传,小耳朵是隐性遗传.父母双方只要一个人是大耳朵,那么孩子就极有可能也是一对大耳朵. 8.下颚绝对是显性遗传,父母任何一方有突出的大下巴,孩子十有八九会长成相似的下巴,这种特征表现得非常明显. 9.声音孩子的声音通常都会非常接近父母,其相似程度会比长相、形体更甚.如果父亲笑声爽朗,母亲又是个大嗓门,很难想象孩子会细声细气.通常,儿子的声音与父亲很接近,女儿的声音则很像母亲. 声音的高低、音量、音质等各方面,不仅与喉头有关,还要由鼻的大小、张口的大小、舌的长短、颜面的骨骼等各因素综合决定.而且,这些方面无不遗传父母的基因,所以声音遗传是不奇怪的.但是,这种由父母生理解剖结构所影响的音质如果不美,大多数可以通过后天的发音训练而改变.因此,某些声音条件并不优越的人,通过后天的发音训练会发生声音改变.这样,就可以使某些声音条件并不优越的人,通过科学刻苦的练习圆一个拥有甜美圆润嗓音的梦. 10.智力虽然智力不完全由遗传因素所决定,但与遗传有一定关系.人的智力取决于遗传、环境两方面的因素.一般认为,遗传发挥着很大的作用,环境则决定了另外40%.有人长期研究过一群智商在140分以上的孩子,从中发现这些孩子长大后一直保持优秀的才智,他们的孩子的智商平均为128分,远远超过一般孩子的水平.而那些精神缺陷者,他们的孩子当中有59%的人有精神缺陷或智力迟钝. 在智力遗传中,不仅包括智商,还包括情商.所谓的情商,是指人的个性、脾气、处事能力、交际能力等方面.比如,有些孩子在处事能力、交际能力方面像爸爸,而另外一些方面,如个性、脾气与母亲很相像. 另外,孩子的智力与环境也有很大的关系,智力的实际表现还要受后天的极大影响,因此我们提倡早教.从胎儿开始,脑细胞发育的第一高峰出现在10-18周,第二高峰出现在孩子出生后的3-6个月.如果期望孩子智力发育好,就要在第一高峰期即孕期注意摄取营养,在第二高峰期注意进行母乳喂养,这样就会使孩子的智力很好地发育. 11.父母天赋无论是爸爸还是妈妈,在某些方面的天赋都有可能遗传给孩子,使孩子在某些方面的潜力很高.因此,父母的某种天赋在周围环境影响下,如果适当地进行开发,就可以使孩子在这方面有更好的发展. 自古以来,出现了许多高智能结构的家族,如音乐家巴赫、莫扎特和韦伯家族中,几代人中都有诸多的音乐家出现.还有,我国南北朝时著名的科学家祖冲之的儿子祖桓之、孙子祖皓都是机械发明家,也都是著名的天文学家和数学家.这种智力的家族聚集性现象,恰恰说明了先天和后天因素对才艺天赋的作用

B. 长寿老人有长寿基因吗

美国对芽殖酵母和线虫的基因分析

美国科学家通过对芽殖酵母和线虫的基因分析,鉴别出两种生物共有的25个负责调控寿命长短的基因。美国华盛顿大学等机构的科学家2008年3月13日在《基因组研究》杂志上报告说,在这25个“长寿基因”中,至少15个在人的基因组内存在相似版本。这意味着,科学家有可能借此锁定人体内的基因目标,研究如何减缓人的衰老过程,治疗衰老引发的相关疾病。研究小组人员介绍说,他们选择了单细胞芽殖酵母和秀丽隐杆线虫为基因分析对象,二者都是衰老研究领域常用的模型生物。从进化史来看,这两种生物之间相距大概有15亿年,如此悬殊的进化差距比小毛虫和人之间的进化距离还要大。正因如此,从这两种生物体内鉴别出共同拥有的与寿命相关的基因才显得意义重大。另外,人的基因组内也有十几个类似基因存在,这表明,类似基因很可能也能调控人的寿命。华盛顿大学生物化学家布赖恩·肯尼迪说,他们希望将来通过基因工程方法调控人体内的“长寿基因”,不仅延长人的预期寿命,还能延长“健康寿命”,也就是人的生命中身体健康、不受衰老引起的疾病影响的时间段。

人类的寿命与基因有关

人类的寿命与基因有关,体内有多个基因主宰着人的生命长短。那些在恶劣环境下控制机体防御功能的基因,能够显著地改善多种生物的健康状况并且延长其寿命。利用长寿基因的影响力,可以改变人类的生命进程:不让生长和活力因为年老的衰退而却步;使人能够在70岁90岁乃至100多岁时,仍然持他50岁时的蓬勃朝气。科学家们曾经认为老化不仅仅是一个衰退的过程,而是生物体的遗传性程序化发育(genetically programmeddevelopment)的积极延续。个体一旦成熟,“衰老基因”(aging gene)就开始将该个体导向死亡。但这种观点已经不再为人们所相信了,现在人们普遍认同:衰老其实只是由于身体的正常防卫及修复机制随时间流逝而衰退导致的。然而,研究者发现,有一个基因家族与生物体的应激耐受性有关,它们能够加强各个年龄段生物体的自身防卫及修复活性。这些基因通过优化身体的生存机能,最大程度地提高个体渡过困境的几率。如果这些基因处于激活状态的时间足够长,那么还能显著地增进生物体的健康,并延长寿命。其实,这个基因家族就是那些与衰老基因相对立的长寿基因(longevity gene)。

人们对SIR2基因的认识最多

作为首先被确认的长寿基因之一,人们对SIR2基因的认识最多,对长寿基因的研究,让人们看到基因的生存调控机制如何延长寿命,以及如何增进健康。而且越来越多的迹象表明,SIR2基因很可能就是这个机制中的重要调控基因。在寻找引发酵母菌细胞个体衰老的原因时,第一次发现:SIR2基因是长寿基因。当时,我们曾设想这种简单生物体的衰老可能是由某种单一基因所控制,并认为对酵母菌寿命的了解,或许会帮助我们理解人类的衰老过程。而这在当时很多人看来,这些观念是极其荒谬的。酵母菌的衰老程度,是以母细胞在死亡之前分裂产生子细胞的次数来衡量的。酵母菌细胞的寿命,通常在分裂20次左右。

早在20世纪90年代就有报道指出,发现蠕虫和果蝇体内的FOXO3A基因与其衰老过程有密切的关系。从这以后,FOXO3A基因就成为了衰老遗传研究领域中一个非常引人瞩目的元素。也正是因为这样,德国基尔大学临床分子生物学研究团队长期以来都一直努力致力于对这种基因在人类体内变异形态的研究工作。

C. 长寿基因的介绍

科学来家在欧洲人身上自发现攸关日本人长寿的一个基因,研究显示,世界上拥有该基因的民族,也能活得很长寿。德国的这项研究,比较了388位逾百岁德国老人与731位年纪较小者的基因组成,结果发现百岁老人组频繁出现名为FOXO3A的基因变异。该研究检视3741名逾95岁日本老翁的基因,获得同样结论。研究人内柏说:“因为日本人与欧洲人的基因相当不同。如今我们可以推定,这个基因在全球各地都与活得更长寿有关。”

D. 人有长寿基因吗

首先,一个人的长寿与否,是由内和外两方面综合决定的,内在的就是受遗传和表观遗传调控的衰老机制,外在的则是环境中的潜在因素。在这里我们只谈基因学的原因。要去找出这样一部分的基因,会有两种方法,第一,最便捷也是最直接的方法,就是用从大样本量的全基因组测序结果去分析。通过比较长寿和非长寿人群的基因组景观图(Genomic Landscape),找出其中有显著差异的基因;第二,是从衰老机制和信号通路去做理论推测,找出执行某些功能的基因。就第一种方法而言,获取大样本量的测序数据是一大障碍。在2015年的Nature Communication,发表了一项由多方合作的衰老基因学研究。他们做了一个大规模的Meta分析,对14983个人的全血的基因组测序结果进行了基因区别表达的分析,找出了600个与衰老正相关,以及897个与衰老负相关的基因。这1497个基因中,很大一部分的基因功能以及被人类所熟知(例如MYC, LEF1等),但是也有相当一部分衰老相关基因的发现也是全新的(例如CCDC34,DOCK10等),由于这是一项由大规模人体样本测序的研究,它相当有说服力。为了找出这些基因所调控的生物学功能网络,他们由对这个基因列表进行了通路分析(Pathway Analysis). 结果见下图。在和衰老负相关的897个基因中,它们主要可以划分为5个功能集合:核酸代谢,核糖体功能,DNA复制与修复,线粒体代谢,免疫功能。而在于衰老成正相关的600个基因中,主要可以划分为:免疫,细胞骨架形成,脂肪酸和过氧化物酶体代谢,溶酶体代谢和糖胺聚糖的降解。当然,我们也可以去进行理论上的推测,由目前已知的衰老的机制通路去找寻相关的基因。从信号通路上去找,之前的研究已经从各种模式动物身上找出了IGF-1, PI3K, TOR, MAPK, AMPk, PK, NF-kB, TGF-β, NOTCH, WNT 等信号通路对长寿的影响,这些通路主要调控了能量均衡,细胞可塑性以及生物稳态的维持等,这这些信号通路中的重要调控因子,理论上都可以认为是与长寿相关的基因。例如研究最多的IGF-1通路,在正常环境中,它可以通过调控PI3K,AKT的活性来影响细胞的增殖,在不良环境中,它又可以通过调控FOXO转录因子的活性来减少应激反应的毒性积累最后,值得一提的是,衰老还是与表观遗传学调控息息相关的一个过程。宾大的Shelley L. Berger就在2016年的一篇Cell综述里面总结了衰老的七个表观遗传学表现.组蛋白的流失;.表观遗传对激活和失活的平衡被打破;转录改变;.异染色质的失衡;.细胞核核层的破裂; 全局的低甲基化和个别位置的过甲基化;. 染色质重组。而决定人表观遗传稳定性的调控因素,也可以认为是一个可遗传的长寿原因。例如组蛋白甲基化转移酶的水平高度,可以直接决定整个染色质的被摄取率,从而决定整个基因组的转录活性。总而言之,基因的调控无处不在,更不用说是长寿这样一类研究比较充分的方向,这里的回答也是片面地提了几个点。但是在我们了解这些“长寿基因”调控衰老机制的同时,也要意识到每个人的基因组都是独一无二的,有很多问题并非用笼统的医学研究就可以解决。

E. 人有长寿基因吗 揭秘长寿人的10大特点

人类文明越先进,人类恋爱的年龄就越晚!因为人活得更久再生育,后代能够继承到的长寿基因和各种有益基因就越多!
你看老鼠,它们的性成熟时间短,繁殖的时间间隔也就很短。虽然也会有一些长寿的老鼠繁殖后代,但是它们后代能够继承到的长寿基因却会被急剧稀释,因为短寿基因的老鼠实在是太多了!

F. 人有没有长寿基因

我研究证明:人类文明越先进,人类恋爱的年龄就越晚!因为人活得更久再生育,后代能够继承到的长寿基因和各种有益基因就越多!
你看老鼠,它们的性成熟时间短,繁殖的时间间隔也就很短。虽然也会有一些长寿的老鼠繁殖后代,但是它们后代能够继承到的长寿基因却会被急剧稀释,因为短寿基因的老鼠实在是太多了!
人类也一样,所以现在才会有结婚年龄限定,目的就是逐渐提高人类的寿命上限。也就是说,未来的人类,或许会像西方神话中的精灵一样,能够活上千岁。但会因为长时间普遍性的较晚生育,会出现性成熟时间变长的可能。

G. 长寿基因的发现过程

德国基尔大学医学院的一项调查
德国基尔大学医学院的一项调查表明,人体DNA中存在一种名为“FOXO3A”的基因能够助人长寿,而与年轻人相比,这种基因存在于百岁老人体内的情况更加普遍。研究人员在比较了大量德国百岁老人和年轻人的DNA样本后还发现,FOXO3A基因发挥的作用覆盖各种不同人种。基尔大学在一份公报中指出,2008年9月,一个由布拉德利·威尔科克斯博士带领的美国研究小组曾在《美国国家科学研究院学报》上发表一份研究报告,指出这种“长寿基因” 在95岁以上、具有日本血统的美国人体内也普遍存在。
定期接受健康检查的日裔美国男性
布拉德利·威利克斯博士及其同事研究了一群定期接受健康检查的日裔美国男性。科学家筛查了受试者的DNA,把重点放在胰岛素路径的5个基因上。他们计算了每个基因的三个位置上出现的DNA碱基。FOXO3A基因上的一个位置特别突出。在组成了DNA的4种碱基(A、T、C、G)中,大多数受试者在一对染色体的FOXO3A基因位置上拥有的是胸腺嘧啶(T)。但是鸟嘌呤(G)取代了胸腺嘧啶(T)的受试者在当初健康检查的时候健康状况更好。但研究发现20年后,在最终到达了98岁平均年龄的男性组中鸟嘌呤(G)出现的频率更高。科学家在这些老年人中的许多人身上发现了有两个G(GG)的等位基因,他们认为这可能是这些人在老龄时非常健康的原因。
确定了当FOXO3A基因在DNA上时
此外,这项研究还确定了当FOXO3A基因在DNA上的一个含氮碱基上出现时,人健康地活到90岁的几率就会更高。基尔大学的研究报告指出,德国研究人员在将1762名百岁及90岁以上的德国长寿老人的DNA样本与年轻人的DNA样本进行比较后确认了威尔科克斯的研究结果。这项研究的负责人阿尔穆特·内贝尔表示,他们的调查结果能够消除此前人们有关FOXO3A基因与长寿之间是否存在紧密联系的所有疑问。此外,日本人和欧洲人之间存在遗传差异,却能在两个人种体内发现同样的“长寿基因”,使得这项研究更是意义非凡。内贝尔指出:“我们可以得出结论认为,这个基因很可能是让全球人类长寿的关键因素。”
临床分子生物学院研究所教授发现
基尔大学临床分子生物学院研究所教授弗里德里克·弗拉切巴特指出,这项研究的最大难点是如何找到大批长寿人群,尤其是百岁以上老人的DNA样本。因为有趣的是,与95岁老人相比,这种基因的遗传作用在百岁以上的老人身上更加明显。这项研究得到了德国石勒苏益格-荷尔施泰因-伯根生物样品库的帮助,这里保存着660份百岁老人的DNA样本,是世界上最大的长寿人群DNA样本收藏库之一。在对大量的资料进行研究后,基尔大学科学家证实FOXO3A基因的作用不分地区和性别,对世界各地的男性和女性都能发挥作用。这就意味着在未来,人类也许可以通过基因手段来控制衰老的过程。
台湾阳明大学研究团队声称
2010年05月03日,台湾阳明大学研究团队声称找到调控寿命长短的Cisd2基因,进一步利用基因转殖技术,提升长寿基因蛋白的量,使实验中的小鼠存活达36个月,较一般老鼠增加1.4倍,相当于人类的110岁。更重要的是,这些“长寿鼠”仍精力充沛毫无老态。未来若能找出补充Cisd2基因的物质,人类也可望长生不老、永保青青。

H. 长寿基因的初步解密

它拥有多种组合方式
俄罗斯科学院“矢量”病毒学和生物技术科学中心研究人员在3种基因(P53、CCR5和ФНО)的基础上,发现了多种长寿基因组合,并发现它们之间的不同基因组合对人体健康有着不同的影响,有的基因组合可以延长人的寿命,有的则相反,会导致一些重大疾病的发生。有关专家认为,该科研成果对人寿命的研究有重要价值。
人类寿命的延长是一个复杂过程,依赖于个体的遗传特点和其产生的环境。影响人类寿命的基因可以分为持久性基因、短暂性基因和中性基因三类。因此,长寿者体内一定含有持久性基因的组合。细胞循环的关键调节器P53、化学增活受体基因CCR5和肿瘤坏死因子ФНО都属于持久性基因。研究人员在比较了研究西伯利亚地区长寿者(年龄在84岁-104岁)和少年之间的上述三种基因组合后发现,更多长寿者的基因是持久性基因的组合。比如,ФНО与某些不太活跃的P53的组合,就能够保障细胞的自然死亡,预防疾病发作,这样的基因组合经常能在长寿者中找到。但是,ФНО与CCR5基因组合,则会促进传染病的扩散,包括心血管疾病和肿瘤疾病,有一种与ФНО的基因组合还具有增强抗微生物和抗肿瘤的功能。但是,P53基因的某些组合则可导致肿瘤和青光眼疾病的产生。 有关专家指出,对长寿基因库的研究可获得基因与基因之间、基因与环境之间相互作用的科学信息,更多地认识基因与长寿之间的关系。
在很多种类中,卡路里限制(calorie restriction CR)能改善个体健康、延长寿命。尽管已证明CR能够调节很多下游分子和生理系统,但是CR延长寿命的机理还尚未清楚。果蝇属基因Indy(I’m not dead yet的缩写),在果蝇代谢中参与传送以及储存三羧酸循环的中间产物,科学家猜测。Indy活性的降低能够延长寿命,其机理可能是通过类似于CR改变生理代谢而延长寿命。
科学家Pei-Yu Wang等对此进行了研究,结果为:
和先前假设一致,卡路里摄入量和Indy突变体寿命有很强的相关性(Fig 1A)。和对照组(野生型,+/+)相比,Indy206杂合子无论在正常热量摄入情况下(食物含有10%的葡萄糖和酵母,1.0N)或者高卡路里(1.5N)情况下,寿命都显著性延长(延长29%,P<0.001)。然而在低卡路里(0.5N)情况下,Indy杂合子的寿命最短。卡路里摄入影响Indy mRNA表达量(Fig 1B):野生型从1.5N减少至1.0N,1.0N至0.5N,Indy 的mRNA表达量分别减少了19%和9%; Indy突变体(206/206)果蝇从1.5N减少至1.0N,则减少20%。当Indy mRNA的表达量为正常值25%-75%时,果蝇的寿命最长(Fig 1C)。Indy 长寿的果蝇和CR长寿的果蝇有一些相同表型,比如胰岛信号的减少:和+/+组(1.5N的野生型果蝇)相比,CR组(0.5N的野生型果蝇)和+/206组(1.5N的Indy杂合子)的三种类胰岛肽Dilp2,Dilp3,Dilp5表达量都减少了约50-60%(Fig 2A);FoxO蛋白的核定位是评价果蝇胰岛素信号状态更直接的方法,当胰岛素信号减弱,FoxO蛋白增加表达,+/+组含有很少的FoxO蛋白,CR组和+/206组都出现FoxO蛋白的表达量增加(Fig 2C)。
此外CR组和+/206组都不耐饥(Fig 3A),他们的体重增加的很少(Fig 3C),其甘油三酯和脂肪贮存也很少。在饥饿16h后,+/+组在16h后仍然含有大量油红o染色(Fig 3D,E,H和I),然而CR组和+/206组其脂肪体细胞中几乎没有油红o染色(Fig 3F,G,J和K)。
当哺乳动物限制热量摄入后,会增加自发性的体力活动,这种现象在果蝇中也存在。有趣的是,+/206组(高卡路里摄入)也增加自发性的体力活动(Fig 4)。
因此:Indy和CR相互作用影响寿命,Indy的减少会出现类似CR延长寿命的状态。

I. 长寿主要是基因决定的还是后天决定的怎样让自己长寿

生活中总会有这种人出现,TA抽烟喝酒熬夜一样不落,但是寿命还是很长,其实是因为TA体内携带了一种长寿基因。父母遗传给你的基因,在一定程度上也决定你寿命的长短,良好的生活习惯,规律的健康饮食,定期的运动,在某种程度上便会抵消一些不利的遗传因素,进而延长自己的寿命。

所以说生命是一个非常复杂的因素,我也一直说长生不老是一件复杂的生命系统工程,而且是一点一滴缓慢改变的。合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。同样人的身体损坏也是一点一滴改变的,千里之堤溃于蚁穴。对于我们的身体,我们一定要爱惜,尽量不要熬夜,抽烟喝酒,保持良好的心态,祝您身体健康,生活愉快!

J. 长寿基因在人的寿命中其关键作用,这是真的吗

长寿基因在的确影响着人的寿命,但是并不是起决定性作用的,人究竟能活多长是基因、生活习惯、生存环境、医疗水平等多种因素共同决定的,基因只占相当低的比重。

而现在却常常出现年前人猝死的情况,这就和生活习惯有直接关系了,熬夜、作息不规律、精神压力过大、抽烟酗酒等不良习惯对我们的健康损耗极大,即便是拥有长寿基因,没有良好的生活习惯也很难长寿。

阅读全文

与长寿基因指相关的资料

热点内容
长寿老人在哪里看病 浏览:249
为什么西方的人不长寿 浏览:217
人会长寿不老 浏览:235
阳光体检的体检单怎么看 浏览:562
重阳节是多少岁过的节 浏览:90
贵卅老年大学开放学院报名网站 浏览:325
养生粥的粥桶是多少升的 浏览:500
养老保险够多少年 浏览:787
要退休了社保卡异地转移 浏览:44
女性可以延长退休年龄吗 浏览:569
身份证过期不能领退休金 浏览:569
养老保险和疾病险哪个好 浏览:487
老婆真孝顺 浏览:136
32周免费体检怎么用 浏览:906
正处级领导干部退休年龄58 浏览:224
男人计划50岁退休 浏览:524
昆区哪里可以体检 浏览:597
干什么体力活可长寿 浏览:845
参加重阳节活动有感 浏览:823
老人背发烧是什么原因 浏览:29