导航:首页 > 老年大学 > plasmalogen老年痴呆症

plasmalogen老年痴呆症

发布时间:2022-01-18 14:51:34

1. 说明磷指的结构、特性和生物功能。

磷脂

科技名词定义
中文名称:磷脂英文名称:phospholipid;phosphatide;PL定义1:含有磷酸基团的脂质,包括甘油磷脂和鞘磷脂两类。属于两亲脂质,在生物膜的结构与功能中占重要地位,少量存在于细胞的其他部位。所属学科:生物化学与分子生物学(一级学科);脂质(二级学科)定义2:具有磷酸二酯结构的类脂化合物。所属学科: 水产学(一级学科);水产饲料与肥料(二级学科)定义3:含有一个或多个磷酸基的脂质。是构成细胞膜的主要脂分子。主要分为鞘磷脂及甘油磷脂两大类。所属学科:细胞生物学(一级学科);细胞化学(二级学科)
本内容由全国科学技术名词审定委员会审定公布
网络名片

磷脂(Phospholipid),也称磷脂类、磷脂质,是含有磷酸的脂类,属于复合脂。磷脂组成生物膜的主要成分,分为甘油磷脂与鞘磷脂两大类,分别由甘油和鞘氨醇构成。磷脂为两性分子,一端为亲水的含氮或磷的尾,另一端为疏水(亲油)的长烃基链。由于此原因,磷脂分子亲水端相互靠近,疏水端相互靠近,常与蛋白质、糖脂、胆固醇等其它分子共同构成脂双分子层,即细胞膜的结构。

目录

简介
磷脂的结构
分类
磷脂代谢
磷脂的功能
磷脂的性质
甘油磷脂
鞘磷脂
展开
编辑本段
简介

定义
磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid)。其结构特点
磷脂结构图1
是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail)。在生物膜中磷脂的亲水头位于膜表面,而疏水尾位于膜内侧。
磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂(表面活性剂是能降低液体,通常是水的,表面张力,沿水表面扩散的物质)
组成部分
磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物。根据磷脂的主链结构分为磷酸甘油脂和鞘磷脂。
1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯。体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种。
从分子结构可知甘油分子的中央原子是不对称的。因而有不同的立体构型。天然存在的磷酸甘油酯都具有相同的主体化学构型。按照化学惯例。这些分子可以用二维投影式来表示。D-和L甘油醛的构型就是根据其X射线结晶学结果确定的。右旋为D构型,左旋为L构型。磷酸甘油酯的立化化学构型及命名由此而确定。
2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连。鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇。有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头。
鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺。人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成。神经鞘磷酯是构成生物膜的重要磷酯。它常与卵磷脂并存细胞膜外侧。
编辑本段
磷脂的结构

甘油的C(1)和C(2)羟基被脂肪酸酯化,C(3)羟基被磷酸酯化,磷酸又与一极性醇X—OH连接,这就构成甘油磷脂。分子的非极性尾含有两个脂肪酸的长烃链,甘油C(1)连结的常是含16或18个碳原子的饱和脂肪酸,其C(2)位则常被16~20个碳原子的不饱和脂肪酸占据。磷酰—X组成甘油磷脂的极性头,故甘油磷脂可根据极性头醇(X—OH)的不同分类。X=H构成最简单的甘油磷脂,叫做磷脂酸,它在生物膜中仅有少量。通常存在于生物膜中的甘油磷脂都有极性头。重要的甘油磷脂极性头基举例如下。

磷脂结构图2
极性脂在水溶液表面自然形成厚度为一个脂质分子的脂单层,其烃尾避开水朝向大气,而亲水的极性头则指向极性的水相。在水系统中,极性脂自然聚在一起形成分子团(非极性尾朝内)或极薄的脂双层以分开两个水性部分。脂双层脂质分子的非极性尾向内伸展形成一个连续的内部碳氢核心,而极性头朝外,伸入水相中。脂双层较软,易弯曲流动,是生物膜的基本结构,它们依膜的类型不同,占膜重量的20~80%不等。
鞘磷脂的结构和性质见鞘脂。
编辑本段
分类

分类标准
磷脂根据骨架的不同可以分为磷酸甘油脂(glycerolphospholiid)和鞘磷脂(sphingolipid)。它们都是极性脂。极性脂由极性部分(叫做极性头)和非极性部分(叫做非极性尾
粉末磷脂
)组成。其中,甘油磷脂又可以根据极性头部集团的不同区分为磷脂酰胆碱(Phosphatidyl cholines,PC)、磷脂酰乙醇氨(Phosphatidyl ethanolamines,PE)、磷脂酰丝氨酸(Phosphatidyl serines,PS)、磷脂酰肌醇(Phosphatidyl inositols,PI)、磷脂酰甘油(PG)、甘油磷脂酸(phosphatidic acid,PA)等。
具体分类
依照氨基醇的不同可分以下几类:各种甘油磷脂的极性头部和电荷量
(1)、 磷脂酰胆碱(卵磷脂)(PC),HO—CH2CH2N+(CH3)3(胆碱),分布:,植物:大豆等,动物:脑、精液、肾上腺、红细胞,蛋卵黄(8-10%)。作用:控制肝脂代谢,防止脂肪肝的形成。
(2)、 磷脂酰乙醇胺(脑磷脂)(PE),HO—CH2CH2—N+H3(乙醇胺),参与血液凝结。
(3)、 磷脂酰丝氨酸(PS),HO—CH2CH—COO-(丝氨酸), N+H3,
注:(1)—(3)X均为氨基醇。
(4)、 磷脂酰肌醇(PI),
(5)、 磷脂酰甘油(PG)
(6)、 二磷脂酰甘油(心磷脂)
编辑本段
磷脂代谢

磷脂代谢(phospholipid metabolism):磷脂在生物体内可经各种磷脂酶作用水解为甘油、脂肪酸、磷酸和各种氨基醇(如胆碱、乙醇胺、丝氨酸等)。甘油可以转变为磷酸二羟丙酮,参加糖代谢。脂肪酸经β-氧化作用而分解。磷酸是体内各种物质代谢不可缺少的物质。各种氨基醇可以参加体内磷脂的再合成,胆碱还可以通过转甲基作用转变为其他物质。磷脂合成时,乙醇胺或胆碱与atp在激酶的作用下生成磷酸乙醇胺或磷酸胆碱,然后再与ctp作用转变成胞二磷乙醇胺或胞二磷胆碱。胞二磷乙醇胺或胞二磷胆碱再与已生成的甘油二酯(见甘油三酯的生成)合成相应的磷脂。
编辑本段
磷脂的功能

磷脂,是含有磷脂根的类脂化合物,是生命基础物质。而细胞膜就由4
大豆磷脂粉
0%左右蛋白质和50%左右的脂质(磷脂为主)构成。它是由卵磷脂,肌醇磷脂,脑磷脂等组成。这些磷脂分别对人体的各部位和各器官起着相应的功能。
人体所有细胞中都含有磷脂,它是维持生命活动的基础物质。磷脂对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用。概括的讲磷脂的基本功用是:增强脑力,安定神经,平衡内分泌,提高免疫力和再生力,解毒利尿,清洁血液,健美肌肤,保持年轻,延缓衰老。
乳化作用
分解过高的血脂和过高的胆固醇,清扫血管,使血管循环顺畅,被公认为血管清道夫。还可以使中性脂肪和血管中积压的胆固醇乳化为对人体无害的微分子状态,并溶解于水中排出体外。同时阻止多余脂肪在血管壁沉积,缓解心脑血管的压力。磷脂之所以防治现代文明病,其根本原因之一,就是在于它具有强大的乳化作用。
拿心脑血管疾病来说吧.。日常肉类摄取过多,造成胆固醇,脂类沉积,造成血管通道狭窄,引起高血压。血液中的血脂块及脱落的胆固醇块遇到血管窄小位置,卡住通不过,就造成了堵塞,形成栓塞。而磷脂强大的乳化作用可乳化血管内沉积在血管壁上的胆固醇及脂类,形成乳白色液体,排出体外。
冠心病,结石都是同等道理。
增智
人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张。而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱。而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体。可以加快神经细胞和大脑细胞间信息传递的速度,增加记忆力,预防老年痴呆
活化细胞
磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任。如果人每天所消耗的磷脂得不到补充,细胞就会处于营养缺乏状态,失去活力。
人的肝脏能合成一些磷脂,但大部分是从饮食中摄取的,特别是三四十岁以后。但是磷脂的活性以25度左右最有效,温度超过摄氏50度后,磷脂活性会大部分失去。因此建议健康的人亚健康的人都可以食用磷脂,会给你带来出乎意料的效果。
编辑本段
磷脂的性质

物理性质
依加工和漂白程度而呈乳白,浅黄和棕色。易溶于乙醚、笨、三氯甲烷、正己烷,不溶于丙酮、水等极性溶剂。属于两性表面活性剂,具有乳化性。
化学性质
可进行水解反应,乙酰基化,羟基化,酰基化,磺化,饱和化(氧化使磷脂饱和),活化(引入不饱和基团)等反应。
编辑本段
甘油磷脂

分类及生理功能
甘油磷脂是机体含量最多的一类磷脂,它除了构成生物膜外,还是胆
甘油磷脂结构图
汁和膜表面活性物质等的成分之一,并参与细胞膜对蛋白质的识别和信号传导。?
甘油磷脂基本结构是磷脂酸和与磷酸相连的取代基团(X);
甘油磷脂由于取代基团不同又可以分为许多类,其中重要的有:?
胆碱(choline) + 磷脂酸 ——→ 磷脂酰胆碱(phosphatidylcholine)又称卵磷脂(lecithin)?
乙醇胺(ethanolamine) + 磷脂酸 ——→磷脂酰乙醇胺(phosphatidylethanolamine)又称脑磷脂(cephain)?
丝氨酸(serine) + 磷脂酸 ——→ 磷脂酰丝氨酸(phosphatidylserine)?
甘油(glycerol) + 磷脂酸 ——→ 磷脂酰甘油(phosphatidylglycerol)?
肌醇(inositol) + 磷脂酸 ——→ 磷脂酰肌醇(phosphatidylinositol)?
心磷脂(cardiolipin)是由甘油的C1和C3与两分子磷脂酸结合而成。心磷脂是线粒体内膜和细菌膜的重要成分,而且是唯一具有抗原性的磷脂分子。
除以上6种以外,在甘油磷脂分子中甘油第1位的脂酰基被长链醇取代形成醚,如缩醛磷脂(plasmalogen)及血小板活化因子(plateletactivating factor,PAF),它们都属于甘油磷脂。
甘油磷脂的合成
合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。
1. 原料来源?
合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成(详见甘油三酯合成代谢),但其甘油C2位上的脂肪酸多为必需脂肪酸,需食物供给。取代基团中胆碱和乙醇胺可由丝氨酸在体内转变生成或食物供给。?
丝氨酸——→乙醇胺——→胆碱
2. 活化?
磷脂酸和取代基团在合成之前,两者之一必须首先被CTP活化而被CDP携带,胆碱与乙醇胺可生成CDP-胆碱和CDP-乙醇胺,磷脂酸可生成CDP-甘油二酯。
3. 甘油磷脂生成
1)磷脂酰胆碱和磷脂酰乙醇胺
这两种磷脂生成是由活化的CDP-胆碱与CDP-乙醇胺和甘油二脂生成。此外磷脂酰乙醇胺在肝脏还可由与腺苷蛋氨酸提供甲基转变为磷脂酰胆碱。不同生物合成磷脂酰胆碱的途径有所不同。
2)磷脂酰丝氨酸
体内磷脂酰丝氨酸合成是通过Ca2+激活的酰基交换反应生成,由磷脂酰乙醇胺与丝氨酸反应生成磷脂酰丝氨酸和乙醇胺。?
磷脂酰乙醇胺 + 丝氨酸 ——→ 磷脂酰丝氨酸 + 乙醇胺
3)磷脂酰肌醇、磷脂酰甘油和心磷脂
述三者生成是由活化的CDP-甘油二酯与相应取代基团反应生成。
心磷脂的另一条合成途径。
4)缩醛磷脂与血小板活化因子?
缩醛磷脂与血小板活化因子的合成过程与上述磷脂合成过程类似,不同之处在于磷脂酸合成之前,由糖代谢中间产物磷酸二羟丙酮转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物。此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂。血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基。
甘油磷脂的分解
在生物体内存在一些可以水解甘油磷脂的磷脂酶类,其中主要的有磷脂酶A1、A2、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物。这一过程也是甘油磷酯的改造加工过程。
1. 磷脂酶A1
自然界分布广泛,主要存在于细胞的溶酶体内,此外蛇毒及某些微生物中亦有,可有催化甘油磷脂的第1位酯键断裂,产物为脂肪酸和溶血磷脂2。?
2. 磷脂酶A2
普遍存在于动物各组织细胞膜及线粒体膜,能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂1及其产物脂肪酸和甘油磷酸胆碱或甘油磷酸乙醇胺等。?
溶血磷脂是一类具有较强表面活性的性质,能使红细胞及其他细胞膜破裂,引起溶血或细胞坏死。当经磷脂酶B作用脱去脂肪酸后,转变成甘油磷酸胆碱或甘油磷酸乙醇胺,即失去溶解细胞膜的作用。?
3. 磷脂酶C
存在于细胞膜及某些细胞中,特异水解甘油磷脂分子中第3位磷酸酯键,其结果是释放磷酸胆碱或磷酸乙醇胺,并余下作用物分子中的其他组分。?
4. 磷脂酶D
主要存在于植物,动物脑组织中亦有,催化磷脂分子中磷酸与取代基团(如胆碱等)间的酯键,释放出取代基团。
编辑本段
鞘磷脂

鞘脂类(sphingolipid),组成特点是不含甘油而含鞘氨醇(sphingosine)。
按照取代基团X的不同可分为两种:?
X为磷酸胆碱称为鞘磷脂(sphingmyelin)?
X为糖基称为鞘糖脂(glycosphingolipid)?
鞘磷脂的合成
体内的组织均可合成鞘磷脂,以脑组织最为活跃,是构成神经组织膜的主要成分,合成在细胞内质网上进行。?
以脂酰CoA和丝氨酸为原料,消耗NADPH生成二氢鞘氨醇,进而经脂肪酰转移酶作用生成神经酰胺。
鞘磷脂的分解
鞘磷脂经磷脂酶(sphingomyelinase)作用,水解产生磷酸胆碱和神经酰胺。如缺乏此酶可引起肝、脾肿大及神经障碍如痴呆等鞘磷脂沉积症。
编辑本段
卵磷脂的功效及其应用

[1]卵磷脂的生理功能;
1.组成细胞膜,对细胞活化、生存及功能维持有重要作用,尤其是脑神经系统、心血管、血液、肝脏等重要脏器的功能保持、肌肉、关节的活力和脂肪代谢都有重要作用。
2.卵磷脂是神经信使——乙酰胆碱中胆碱的供体,它的多少决定着住处伟递速度快慢、智力是否发达,是否充满精神、活力。它又是脑细胞的组成成分,人脑30%是磷脂。
3.调节脂肪代谢、防治脂肪肝,预防肝硬化、肝癌。
4.良好的乳化特征,可减少和清除血管壁上胆固醇沉积,降低血液粘稠度、改善血氧供应,延长红血球寿命并增强造血功能。
5.药物载体:卵磷脂质体是由脂质双层分子组成的单层或复层泡囊、极适宜在体内降解,无毒性,无免疫原性。作为载体有降低药物毒性、提高疗效、减少副作用和药物剂量的作用。
卵磷脂的应用:
1.健脑益智:卵磷脂被小肠吸收后,能水解出胆碱来,随着血液进入大脑中,与醋酸结合转化为乙酰胆碱,也就是记忆素。它是一种神经传导物质,其含量越高,传递住处的速度越快,记忆力就越强,所以卵磷脂对智力开发和增强记忆力有独特功效,是知识界必备的“脑的食品”。
2.血管“清道夫”:卵磷脂具有乳化分解油脂的作用,可增进血液循环、改善血清质,清除过氧化物,使血液中的胆固醇及中性脂肪含量降低,减少脂肪在血管内壁的滞留时间。促进粥样硬化斑的消散,防止由胆固醇引起的血管内膜操作,卵磷脂对高血脂和高胆固醇有显著的功效,可预防和治疗动脉硬化。
3.防治老年性痴呆症:老年性痴呆又称阿尔茨海默病,是由于脑部血管病变导致脑缺氧,脑细胞死亡致使住处伟递障碍而引起的意识障碍性疾病。补充卵磷脂可提高脑细胞中乙酰胆碱的含量,活化和再生脑细胞,从而恢复和改善大脑的功能。所以卵磷脂是脑疾患的物美价廉的功能性食品。
4.防治肝病:人体肝脏含磷5%,如含量下降则磷脂载脂体缺乏,脂肪则易囤积于肝脏形成脂肪肝,进而可能形成肝硬化、甚至肝癌。卵磷脂即有亲水性又有亲油性,良好的乳化特性可使脂肪乳化,因此对防治脂肪肝功效显著。
5.防治胆结石:胆固醇和胆红素的沉积是形成结石的基础,卵磷脂的乳化作用可溶解和阻止它的沉积,从根本上治疗和预防胆结石。
6.防治便秘:磷脂的活化细胞功能可促进结肠的蠕动,并将水分送出肠壁,促进毛细管的畅通。从而消除便秘及由其引起的焦虑和疱疹等症状。
7.良好的心理调和剂:社会竞争日趋激烈,人们长期处于紧张的环境和种种压力下,常患有焦虑、急躁、失眠、耳鸣等症,即植物神经紊乱,通常称为神经衰弱,经常补充卵磷脂,可使大脑神经及时得到营养补充,保持健康的工作状态,得消除疲劳,激活脑细胞,改善因神经紧张而引起的焦躁、易怒、失眠等症。
8.糖尿病患者的营养品:卵磷脂不足,会使胰脏功能下降,无法分泌充分的胰岛素,不能有效的将血清中的葡萄糖运送到细胞中,这是导致糖尿病的基本原因之一。卵磷脂构成细胞膜有接收糖分,并使其顺利排出体外的功能,且有促进胰脏释放胰岛素的作用。因此服用卵磷脂可有效地降低血糖,防治糖尿病。
9.利尿、护肾剂:磷脂有利尿作用,可使细胞内的废物和尿一起排出,有助于保护肾脏。
10.美容、防脱发护发:磷脂中有肌醇成分,有维护毛发的作用。其改善发根微循环的作用也使头发获得足够的营养供给起到保发护发的作用。人体肠内积蓄的废物形成肠毒入血可促生青春痘、雀斑、老年斑,造成肌肤粗糙。磷脂可化解肠毒,并排出体外,故可使肌肤光滑柔润,消除青春痘、雀斑、老年斑等。
11.胎、婴儿神经发育的必需品:孕妇体内的羊水中含有大量的卵磷脂,人体脑细胞约有150亿个,其中70%早在母体就已形成。为促进胎儿脑细胞能健康发育,孕妇补充足够的卵磷脂是很重要的。婴、幼儿时期是大脑形成发育最关键时期,卵磷脂可以促进大脑神经系统与脑容积的增长、发育。

2. 生物竞赛体 高一(2)

磷脂
英语名词:phospholipi
所以简称PL
磷脂的概念
磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid)。其结构特点是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail)。在生物膜中磷脂的亲水头位于膜表面,而疏水尾位于膜内侧。
磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂(表面活性剂是能降低液体,通常是水的,表面张力,沿水表面扩散的物质)
磷脂的结构
甘油的C(1)和C(2)羟基被脂肪酸酯化,C(3)羟基被磷酸酯化,磷酸又与一极性醇X—OH连接,这就构成甘油磷脂。分子的非极性尾含有两个脂肪酸的长烃链,甘油C(1)连结的常是含16或18个碳原子的饱和脂肪酸,其C(2)位则常被16~20个碳原子的不饱和脂肪酸占据。磷酰—X组成甘油磷脂的极性头,故甘油磷脂可根据极性头醇(X—OH)的不同分类。X=H构成最简单的甘油磷脂,叫做磷脂酸,它在生物膜中仅有少量。通常存在于生物膜中的甘油磷脂都有极性头。重要的甘油磷脂极性头基举例如下。
极性脂在水溶液表面自然形成厚度为一个脂质分子的脂单层,其烃尾避开水朝向大气,而亲水的极性头则指向极性的水相。在水系统中,极性脂自然聚在一起形成分子团(非极性尾朝内)或极薄的脂双层以分开两个水性部分。脂双层脂质分子的非极性尾向内伸展形成一个连续的内部碳氢核心,而极性头朝外,伸入水相中。脂双层较软,易弯曲流动,是生物膜的基本结构,它们依膜的类型不同,占膜重量的20~80%不等。
鞘磷脂的结构和性质见鞘脂。
磷脂的分类
磷脂根据骨架的不同可以分为磷酸甘油脂(glycerolphospholiid)和鞘磷脂(sphingolipid)。它们都是极性脂。极性脂由极性部分(叫做极性头)和非极性部分(叫做非极性尾)组成。其中,甘油磷脂又可以根据极性头部集团的不同区分为磷脂酰胆碱(Phosphatidyl cholines,PC)、磷脂酰乙醇氨(Phosphatidyl ethanolamines,PE)、磷脂酰丝氨酸(Phosphatidyl serines,PS)、磷脂酰肌醇(Phosphatidyl inositols,PI)、磷脂酰甘油(PG)、甘油磷脂酸(phosphatidic acid,PA)等。
依照氨基醇的不同可分以下几类:各种甘油磷脂的极性头部和电荷量
(1)、 磷脂酰胆碱(卵磷脂)(PC),HO—CH2CH2N+(CH3)3(胆碱),分布:,植物:大豆等,动物:脑、精液、肾上腺、红细胞,蛋卵黄(8-10%)。作用:控制肝脂代谢,防止脂肪肝的形成。
(2)、 磷脂酰乙醇胺(脑磷脂)(PE),HO—CH2CH2—N+H3(乙醇胺),参与血液凝结。
(3)、 磷脂酰丝氨酸(PS),HO—CH2CH—COO-(丝氨酸), N+H3,
注:(1)—(3)X均为氨基醇。
(4)、 磷脂酰肌醇(PI),
(5)、 磷脂酰甘油(PG)
(6)、 二磷脂酰甘油(心磷脂)
一、甘油磷脂
(一)分类及生理功能
甘油磷脂是机体含量最多的一类磷脂,它除了构成生物膜外,还是胆汁和膜表面活性物质等的成分之一,并参与细胞膜对蛋白质的识别和信号传导。�
甘油磷脂基本结构是磷脂酸和与磷酸相连的取代基团(X);
甘油磷脂由于取代基团不同又可以分为许多类,其中重要的有:�
胆碱(choline) + 磷脂酸 ——→ 磷脂酰胆碱(phosphatidylcholine)又称卵磷脂(lecithin)�
乙醇胺(ethanolamine) + 磷脂酸 ——→磷脂酰乙醇胺(phosphatidylethanolamine)又称脑磷脂(cephain)�
丝氨酸(serine) + 磷脂酸 ——→ 磷脂酰丝氨酸(phosphatidylserine)�
甘油(glycerol) + 磷脂酸 ——→ 磷脂酰甘油(phosphatidylglycerol)�
肌醇(inositol) + 磷脂酸 ——→ 磷脂酰肌醇(phosphatidylinositol)�
心磷脂(cardiolipin)是由甘油的C1和C3与两分子磷脂酸结合而成。心磷脂是线粒体内膜和细菌膜的重要成分,而且是唯一具有抗原性的磷脂分子。
除以上6种以外,在甘油磷脂分子中甘油第1位的脂酰基被长链醇取代形成醚,如缩醛磷脂(plasmalogen)及血小板活化因子(plateletactivating factor,PAF),它们都属于甘油磷脂。
(二)甘油磷脂的合成
合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成。甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞。机体各种组织(除成熟红细胞外)即可以进行磷脂合成。
1. 原料来源�
合成甘油磷脂的原料为磷脂酸与取代基团。磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成(详见甘油三酯合成代谢),但其甘油C2位上的脂肪酸多为必需脂肪酸,需食物供给。取代基团中胆碱和乙醇胺可由丝氨酸在体内转变生成或食物供给。�
丝氨酸——→乙醇胺——→胆碱
2. 活化�
磷脂酸和取代基团在合成之前,两者之一必须首先被CTP活化而被CDP携带,胆碱与乙醇胺可生成CDP-胆碱和CDP-乙醇胺,磷脂酸可生成CDP-甘油二酯。
3. 甘油磷脂生成
1)磷脂酰胆碱和磷脂酰乙醇胺
这两种磷脂生成是由活化的CDP-胆碱与CDP-乙醇胺和甘油二脂生成。此外磷脂酰乙醇胺在肝脏还可由与腺苷蛋氨酸提供甲基转变为磷脂酰胆碱。不同生物合成磷脂酰胆碱的途径有所不同。
2)磷脂酰丝氨酸
体内磷脂酰丝氨酸合成是通过Ca2+激活的酰基交换反应生成,由磷脂酰乙醇胺与丝氨酸反应生成磷脂酰丝氨酸和乙醇胺。�
磷脂酰乙醇胺 + 丝氨酸 ——→ 磷脂酰丝氨酸 + 乙醇胺
3)磷脂酰肌醇、磷脂酰甘油和心磷脂
述三者生成是由活化的CDP-甘油二酯与相应取代基团反应生成。
心磷脂的另一条合成途径。
4)缩醛磷脂与血小板活化因子�
缩醛磷脂与血小板活化因子的合成过程与上述磷脂合成过程类似,不同之处在于磷脂酸合成之前,由糖代谢中间产物磷酸二羟丙酮转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物。此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂。血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基。
(三)甘油磷脂的分解
在生物体内存在一些可以水解甘油磷脂的磷脂酶类,其中主要的有磷脂酶A1、A2、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物。这一过程也是甘油磷酯的改造加工过程。
1. 磷脂酶A1
自然界分布广泛,主要存在于细胞的溶酶体内,此外蛇毒及某些微生物中亦有,可有催化甘油磷脂的第1位酯键断裂,产物为脂肪酸和溶血磷脂2。�
2. 磷脂酶A2
普遍存在于动物各组织细胞膜及线粒体膜,能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂1及其产物脂肪酸和甘油磷酸胆碱或甘油磷酸乙醇胺等。�
溶血磷脂是一类具有较强表面活性的性质,能使红细胞及其他细胞膜破裂,引起溶血或细胞坏死。当经磷脂酶B作用脱去脂肪酸后,转变成甘油磷酸胆碱或甘油磷酸乙醇胺,即失去溶解细胞膜的作用。�
3. 磷脂酶C
存在于细胞膜及某些细胞中,特异水解甘油磷脂分子中第3位磷酸酯键,其结果是释放磷酸胆碱或磷酸乙醇胺,并余下作用物分子中的其他组分。�
4. 磷脂酶D
主要存在于植物,动物脑组织中亦有,催化磷脂分子中磷酸与取代基团(如胆碱等)间的酯键,释放出取代基团。
二、鞘磷脂
鞘脂类(sphingolipid),组成特点是不含甘油而含鞘氨醇(sphingosine)。
按照取代基团X的不同可分为两种:�
X为磷酸胆碱称为鞘磷脂(sphingmyelin)�
X为糖基称为鞘糖脂(glycosphingolipid)�
(一)鞘磷脂的合成
体内的组织均可合成鞘磷脂,以脑组织最为活跃,是构成神经组织膜的主要成分,合成在细胞内质网上进行。�
以脂酰CoA和丝氨酸为原料,消耗NADPH生成二氢鞘氨醇,进而经脂肪酰转移酶作用生成神经酰胺。
(二)鞘磷脂的分解
鞘磷脂经磷脂酶(sphingomyelinase)作用,水解产生磷酸胆碱和神经酰胺。如缺乏此酶可引起肝、脾肿大及神经障碍如痴呆等鞘磷脂沉积症。
磷脂代谢
磷脂代谢(phospholipid metabolism):磷脂在生物体内可经各种磷脂酶作用水解为甘油、脂肪酸、磷酸和各种氨基醇(如胆碱、乙醇胺、丝氨酸等)。甘油可以转变为磷酸二羟丙酮,参加糖代谢。脂肪酸经β-氧化作用而分解。磷酸是体内各种物质代谢不可缺少的物质。各种氨基醇可以参加体内磷脂的再合成,胆碱还可以通过转甲基作用转变为其他物质。磷脂合成时,乙醇胺或胆碱与atp在激酶的作用下生成磷酸乙醇胺或磷酸胆碱,然后再与ctp作用转变成胞二磷乙醇胺或胞二磷胆碱。胞二磷乙醇胺或胞二磷胆碱再与已生成的甘油二酯(见甘油三酯的生成)合成相应的磷脂。
磷脂的功能
磷脂,是含有磷脂根的类脂化合物,是生命基础物质。而细胞膜就由70%左右蛋白质和30%左右的磷脂构成。它是由卵磷脂,肌醇磷脂,脑磷脂等组成。这些磷脂分别对人体的各部位和各器官起着相应的功能。
人体所有细胞中都含有磷脂,它是维持生命活动的基础物质。磷脂对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用。概括的讲磷脂的基本功用是:增强脑力,安定神经,平衡内分泌,提高免疫力和再生力,解毒利尿,清洁血液,健美肌肤,保持年轻,延续衰老。
磷脂主要作用之一是:乳化作用
分解过高的血脂和过高的胆固醇,清扫清管,使血管循环顺畅,是公认为血管清道夫。还可以使中性脂肪和血管中积压的胆固醇乳化为对人体无害的微分子状态,并溶解于水中排出体外。同时阻止多余脂肪在血管壁沉积,缓解心脑血管的压力。磷脂之所以防治现代文明病,其根本原因之一,就是在于它具有强大的乳化作用。
拿心脑血管疾病来说吧.。日常肉类摄取过多,造成胆固醇,脂类沉积,造成血管通道狭窄,引起高血压。血液中的血脂块及脱落的胆固醇块遇到血管窄小位置,卡住通不过,就造成了堵塞,形成栓塞。而磷脂强大的乳化作用可乳化血管内沉积在血管壁上的胆固醇及脂类,形成乳白色液体,排出体外。
冠心病,结石都是同等道理。
磷脂主要作用之二:增智
人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张。而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱。而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体。可以加快神经细胞和大脑细胞间信息传递的速度,增加记忆力,预防老年痴呆。
磷脂主要作用之三:活化细胞
磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任。如果人每天所消耗的磷脂得不到补充,细胞就会处于营养缺乏状态,失去活力。
人的肝脏能合成一些磷脂,但大部分是从饮食中摄取的,特别是三四十岁以后。但是磷脂的活性以25度左右最有效,温度超过摄氏50度后,磷脂活性会大部分失去。因此建议健康的人亚健康的人都可以食用磷脂,会给你带来出乎意料的效果。

3. 脑白质营养不良有好的治疗方法吗

常见脑白质营养不良的诊断与治疗 (一)异染性脑白质营养不良(metachromatic leukodystrophy,MLD) MLD又称为脑硫脂沉积病(sulfatidosis),常染色体隐性遗传,是芳基硫酸脂酶A缺陷所致的髓鞘形成不良。由于编码溶酶体芳基硫酸脂酶A(arylsulfatase A,ASA)的基因MLD突变所引致,MLD位于22q13.33,其突变种类较多;大致可分为两组:I型突变的患者不能产生具有活力的ASA,其培养细胞中无ASA活性可测得;A型突变患者则可合成少量具有活力的ASA。患者的表型取决于其基因突变的种类:I型突变的纯合子或具2个不同I型突变者在临床上表现为晚期婴儿型;具有I型和A型突变各一者为青、少年型;而2个突变均为A型时,则呈现为成年型。少数本病患者,特别是青少年型的发病不是由于MLD突变所致,其ASA活力正常,这是由于患者缺少一种溶酶体蛋白,硫酸脑苷酯激活因子(SAP1)所造成的。这类患者亦称为"激活因子缺乏性异染性脑白质营养不良"。 按起病年龄及临床征象, MLD可分为晚婴型、幼年型和成年型3型。 晚婴型最多见,占全部病例的60%~70%,其发病率约为1/4万,初生时正常,85%发病前已能正常行走。多在2岁左右起病。早期步态异常,共济失调,斜视,肌张力低下,自主运动减少,腱反射引不出,神经传导速度减慢。后者是由于末梢神经受累之故。中期智力减退、反应减少、语言消失、病理反射阳性、不注视、瞳孔对光反应迟钝、可有视神经萎缩。晚期呈去大脑强直体位,偶有抽搐发作。有球麻痹征。病程持续进展,多在4~8岁间死于间发感染。 晚发型(青少年型和成人型)发病年龄自3~10岁至青春期、甚至成人期不等,临床表现不一。起病时也以进行性行走困难为主,伴有腱反射减退、神经传导速度降低等外周神经受累表现;发病年龄较晚的青少年或成年人常先有学习或工作成绩下降、行为异常、认知障碍等,然后才出现共济失调等动作异常和锥体束征。本型病程约为5~10年。 本病的确诊依据是ASA活力检测,但在少数有典型症状而ASA活力正常情况时,则应考虑激活因子缺乏性异染性脑白质营养不良的可能性。 本病患者在症状尚未出现以前可考虑进行骨髓移植,以延缓或终止病情发展;对神经系统已有广泛病变者尚无满意治疗方法。 (二)肾上腺脑白质营养不良 肾上腺脑白质营养不良在遗传方式上可分两种类型。一种是较多见的X连锁遗传(X-linked adrenoleukodystrophy,XLALD或简称ALD);另一种是常染色体隐性遗传,发生于新生儿,称为新生儿肾上腺脑白质营养不良(neonatal adrenoleukodystrophy,NALD)。 肾上腺脑白质营养不良的诊断依靠以下检查:①CT和MRI;②电生理检查,儿童ALD早期诱发电位和神经传导速度正常。成人AMN时神经传导速度减慢,脑干听觉诱发电位有异常;③脑脊液,ALD大多正常,可有蛋白和细胞数稍增高。NALD常见脑脊液蛋白增高;④血浆和皮肤成纤维细胞中VLCFA增高,特别是C26脂肪酸增高,C26/C22比值增加,有诊断意义;⑤在发生肾上腺皮质功能不全的阿狄森氏危象时,血中皮质醇减低,在不发生危象时, ACTH刺激试验也能发现肾上腺代偿储备减少。对于男性Addison病,即使未见神经系统症状,也应检测VLCFA,以免漏诊。 1.ALD 病理特点是中枢神经进行性脱髓鞘以及/或肾上腺皮质萎缩或发育不良;生化代谢特点是血浆中极长链脂肪酸异常增高;细胞中过氧化物酶体有结构的或酶活性缺陷,故属于过氧化物酶体病(peroxisomal diseases)。ALD临床分为六个类型(表2):1)儿童脑型;2)青春期脑型;3)成人脑型;4)肾上腺脊髓神经病型;5)Addison病型;6)无症状型。杂合子女性也可出现症状,约20%~30%可以发展成类似AMN综合征,但病情较轻,发病较晚,很少见肾上腺质皮质功能不全。在我科报告的29例中,22例儿童脑型、4例青春期脑型、1例肾上腺脊髓神经病型、1例Addison病型和1例无症状型。 激素替代治疗对ALD患者肾上腺素皮质功能不全有效,但不能改善神经系统症状。饮食治疗结合服用Lorenzo油,能使血浆中的C26:O水平降为正常。尽管生化改变令人鼓舞,但临床效果却不理想。骨髓或脐血干细胞移植主要适应于影像学异常明显而神经症候轻度的脑型患儿,可以重建酶活性,改善临床症状,能持久提高认知功能,改善脑磁共振和波谱分析异常程度。但骨髓移植本身有一定的病死率,且价格昂贵,供体困难,随着骨髓移植技术的提高和无症状ALD的早期检出,骨髓移植可望有很好的治疗前景。对症治疗也很重要,包括功能锻炼、调节肌张力和支持延髓功能,鼻饲喂养加强营养,止惊等。 2.NALD 病理改变严重,脑白质广泛脱髓鞘,灰质亦有轻度变性。可见含脂类的巨噬细胞浸润。肾上腺皮质萎缩,胞浆内有板层状包涵体。患儿肝细胞过氧化物酶体的数目和体积减少。肝大,胆道发育不良。新生儿期首发症状为肌张力减低,惊厥,发育迟缓。可有内疵赘皮、颜面中部发育不良、上睑下垂等。可有肝大。常见白内障碍、眼震、色素性视网膜病。多数病儿在1岁内可有一定程度的发育进步,但以后发育倒退,进行性痉挛性瘫痪,震颤,共济失调,听觉和视觉障碍。有的可见肾上腺皮质功能不全的症状。多在5岁以内死亡。脑脊液常见蛋白增高。诊断靠生化检查。血浆和成纤维细胞的VLCFA水平增高,血中植烷酸增高,六氢吡啶羧酸增多,缩醛磷酸(plasmalogen)减少。在临床上应与脑肝肾综合征(Zellweger病)相鉴别。后者也是常染色体隐性遗传的过氧化物酶体病,但病情更严重,颅面畸形明显,神经系统发育不良,有肝硬化,多发性微小肾囊肿,多在一岁以内死亡。 (三)球形细胞脑白质营养不良(globoid cell leukodystrophy) 球形细胞脑白质营养不良(globoid cell leukodystrophy)又名Krabbe氏病,是常染色体隐性遗传病,致病基因位于14q31。其基本代谢缺陷是半乳糖脑苷脂-β-半乳糖苷酶的缺乏,致使半乳糖脑苷脂蓄积于脑内。半乳糖脑苷脂是髓鞘的重要成分,由于酶的缺乏而髓鞘不能代谢更新,因而神经系统有广泛的脱髓鞘,脑白质出现大量含有沉积物的球形细胞。 本病的婴儿型较多见,3~6个月起病,开始有肌张力减低,易激惹,发育迟缓,对声、光、触等刺激敏感。以后肌张力增高,腱反射亢进,有病理反射。末梢神经受累时,则腱反射减低或消失。智力很快减退,常有癫痫发作。视神经萎缩、眼震、不规则发热也是本病特点。有时有脑积水。肝、脾不大。病程进展较快,最后呈去大脑强直状态,对外界反应完全消失,常在2岁以内因感染或球麻痹而死亡。晚发型多在2~5岁起病,主要表现为偏瘫、共济失调、视神经萎缩,以后出现痴呆、癫痫发作。多在3~8岁间死亡。 实验室检查可见脑脊液蛋白增高。电泳可见白蛋白和α2-球蛋白增高,β1-和γ-球蛋白减低。晚发型脑脊液多为正常或仅见轻度蛋白增多。神经影像学检查可见脑的对称性白质病变,晚期可见脑萎缩,脑室扩大。末梢神经传导速度在婴儿型均有明显延缓,在晚发型改变不明显。 本病确诊依据白细胞或皮肤成纤维细胞的酶活性测定。杂合子的酶活性在正常与患者之间。可进行产前诊断。 本病治疗无特异方法,主要是支持疗法和对症处理。溶酶体酶替代疗法和骨髓移植疗效尚未得到广泛认可,但已有成功病例。 (四)其他 1.Peizaeus-Merzbacher病(PMD) 是X连锁遗传的进行性髓鞘生成不良,可能与(含)蛋白脂类蛋白(proteolipid protein,PLP)的代谢异常有关,致病基因位于Xq22。病理改变主要是脑白质广泛髓鞘缺乏。以前将本病列入嗜苏丹脑白质营养不良范畴,现认为本病时脑白质很少有嗜苏丹物质。婴儿期起病,生后不久可有非节律的、飘动不定的眼震,发育落后。病程约数年至数十年,逐渐进展。可有小脑性共济失调,视神经萎缩,智力落后,不自主运动,痉挛性瘫,癫痫发作。脑脊液正常。本病亦有其他类型,有的在出生时即发病,很快恶化、死亡;有的为中间类型。诊断根据临床特点及家族史。无有效的治疗方法。 2.Canavan病 可能是常染色体隐性遗传,病理改变主要见于脑白质,充满含有液体的囊性空隙,似海绵状,故也称中枢神经海绵样变性。未见髓鞘的分解产物,故本病不是原发性脑白质营养不良。脑白质二己糖神经酰胺增多,末梢神经有轴突变性。血浆和尿中N-乙酰天冬氨酸增多。成纤维细胞有天冬氨酸酰基转移酶(aspartoacylase)缺乏,推测脑内也有该酶缺乏,故认为本病与以前报道的N-天冬氨酸尿症(N-aspartic aciria)可能是同一病种。患儿初生时正常,生后2~4个月开始出现智力发育迟缓,肌张力低下,视神经萎缩。生后6个月开始有明显的进行性头围增大。以后出现癫痫发作,进行性肌张力增高,对声、光、触觉刺激可出现角弓反张。可有舞蹈手足徐动。脑脊液正常。多在5岁以内死亡。有些严重病例在初生时即有肌弛缓,吸吮和吞咽困难,于数周内死亡。也有的起病晚,在5岁以后,表现为进行性痴呆,视神经萎缩,小脑征,锥体束征。诊断根据进行性神经功能衰退,巨头,视神经萎缩,癫痫发作,可考虑本病。CT和MRI可见脑白质有囊样改变。生化检查可见尿中N-乙酰天冬氨酸增多。本病无有效治疗方法。 3.Alexander病 病因尚不明,无特效治疗。婴儿期起病,巨头,智力倒退,痉挛性瘫,癫痫发作。有的病例在儿童期或成年起病。CT检查可见白质弥漫性低密度,额部为著。MRI检查见额部为主的长T1、长T2异常信号,双侧病变弥漫,基本对称。 此外,线粒体病、氨基酸病、有机酸病等遗传代谢病均可伴有脑白质营养不良的病理-临床特点,一般同时具有相应疾病的显著特征。 参考资料: http://www.100nr.com/admin/view.asp?ArticleID=3487

记得采纳啊

4. 脑磷脂生物学功能

磷脂科技名词定义中文名称:磷脂英文名称:phospholipid;phosphatide;PL定义1:含有磷酸基团的脂质,包括甘油磷脂和鞘磷脂两类.属于两亲脂质,在生物膜的结构与功能中占重要地位,少量存在于细胞的其他部位.所属学科:生物化学与分子生物学(一级学科);脂质(二级学科)定义2:具有磷酸二酯结构的类脂化合物.所属学科: 水产学(一级学科);水产饲料与肥料(二级学科)定义3:含有一个或多个磷酸基的脂质.是构成细胞膜的主要脂分子.主要分为鞘磷脂及甘油磷脂两大类.所属学科:细胞生物学(一级学科);细胞化学(二级学科)本内容由全国科学技术名词审定委员会审定公布网络名片磷脂(Phospholipid),也称磷脂类、磷脂质,是含有磷酸的脂类,属于复合脂.磷脂组成生物膜的主要成分,分为甘油磷脂与鞘磷脂两大类,分别由甘油和鞘氨醇构成.磷脂为两性分子,一端为亲水的含氮或磷的尾,另一端为疏水(亲油)的长烃基链.由于此原因,磷脂分子亲水端相互靠近,疏水端相互靠近,常与蛋白质、糖脂、胆固醇等其它分子共同构成脂双分子层,即细胞膜的结构. 目录简介磷脂的结构分类磷脂代谢磷脂的功能磷脂的性质甘油磷脂鞘磷脂展开编辑本段简介定义磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid).其结构特点 磷脂结构图1 是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail).在生物膜中磷脂的亲水头位于膜表面,而疏水尾位于膜内侧. 磷脂是重要的两亲物质,它们是生物膜的重要组分、乳化剂和表面活性剂(表面活性剂是能降低液体,通常是水的,表面张力,沿水表面扩散的物质) 组成部分磷脂(phospholipid)是生物膜的重要组成部分,其特点是在水解后产生含有脂肪酸和磷酸的混合物.根据磷脂的主链结构分为磷酸甘油脂和鞘磷脂. 1.磷酸甘油酯(phosphoglycerides)主链为甘油-3-磷酸,甘油分子中的另外两个羟基都被脂肪酸所酯化,噒酸基团又可被各种结构不同的小分子化合物酯化后形成各种磷酸甘油酯.体内含量较多的是磷脂酰胆碱(卵磷脂)、磷脂酰乙醇胺(脑磷脂)、磷脂酰丝氨酸、磷脂酰甘油、二磷脂酰甘油(心磷酯)及磷酯酰肌醇等,每一磷脂可因组成的脂肪酸不同而有若干种. 从分子结构可知甘油分子的中央原子是不对称的.因而有不同的立体构型.天然存在的磷酸甘油酯都具有相同的主体化学构型.按照化学惯例.这些分子可以用二维投影式来表示.D-和L甘油醛的构型就是根据其X射线结晶学结果确定的.右旋为D构型,左旋为L构型.磷酸甘油酯的立化化学构型及命名由此而确定. 2.鞘磷脂(sphingomyelin)鞘磷脂是含硝氨醇或二氢鞘氨醇的磷脂,其分子不含甘油,是一分子脂肪酸以酰胺键与鞘氨醇的氨基相连.鞘氨醇或二氢鞘氨醇是具有脂肪族长链的氨基二元醇.有疏水的长链脂肪烃基尾和两个羟基及一个氨基的极性头. 鞘磷脂含磷酸,其末端痉基取代基团为磷酸胆碱酸乙醇胺.人体含量最多的鞘磷脂是神经鞘磷脂,由鞘氨醇、脂肪酸及磷酸胆碱构成.神经鞘磷酯是构成生物膜的重要磷酯.它常与卵磷脂并存细胞膜外侧. 编辑本段磷脂的结构甘油的C(1)和C(2)羟基被脂肪酸酯化,C(3)羟基被磷酸酯化,磷酸又与一极性醇X—OH连接,这就构成甘油磷脂.分子的非极性尾含有两个脂肪酸的长烃链,甘油C(1)连结的常是含16或18个碳原子的饱和脂肪酸,其C(2)位则常被16~20个碳原子的不饱和脂肪酸占据.磷酰—X组成甘油磷脂的极性头,故甘油磷脂可根据极性头醇(X—OH)的不同分类.X=H构成最简单的甘油磷脂,叫做磷脂酸,它在生物膜中仅有少量.通常存在于生物膜中的甘油磷脂都有极性头.重要的甘油磷脂极性头基举例如下. 磷脂结构图2 极性脂在水溶液表面自然形成厚度为一个脂质分子的脂单层,其烃尾避开水朝向大气,而亲水的极性头则指向极性的水相.在水系统中,极性脂自然聚在一起形成分子团(非极性尾朝内)或极薄的脂双层以分开两个水性部分.脂双层脂质分子的非极性尾向内伸展形成一个连续的内部碳氢核心,而极性头朝外,伸入水相中.脂双层较软,易弯曲流动,是生物膜的基本结构,它们依膜的类型不同,占膜重量的20~80%不等. 鞘磷脂的结构和性质见鞘脂. 编辑本段分类分类标准磷脂根据骨架的不同可以分为磷酸甘油脂(glycerolphospholiid)和鞘磷脂(sphingolipid).它们都是极性脂.极性脂由极性部分(叫做极性头)和非极性部分(叫做非极性尾 粉末磷脂)组成.其中,甘油磷脂又可以根据极性头部集团的不同区分为磷脂酰胆碱(Phosphatidyl cholines,PC)、磷脂酰乙醇氨(Phosphatidyl ethanolamines,PE)、磷脂酰丝氨酸(Phosphatidyl serines,PS)、磷脂酰肌醇(Phosphatidyl inositols,PI)、磷脂酰甘油(PG)、甘油磷脂酸(phosphatidic acid,PA)等. 具体分类依照氨基醇的不同可分以下几类:各种甘油磷脂的极性头部和电荷量(1)、 磷脂酰胆碱(卵磷脂)(PC),HO—CH2CH2N+(CH3)3(胆碱),分布:,植物:大豆等,动物:脑、精液、肾上腺、红细胞,蛋卵黄(8-10%).作用:控制肝脂代谢,防止脂肪肝的形成. (2)、 磷脂酰乙醇胺(脑磷脂)(PE),HO—CH2CH2—N+H3(乙醇胺),参与血液凝结. (3)、 磷脂酰丝氨酸(PS),HO—CH2CH—COO-(丝氨酸), N+H3, 注:(1)—(3)X均为氨基醇. (4)、 磷脂酰肌醇(PI), (5)、 磷脂酰甘油(PG)(6)、 二磷脂酰甘油(心磷脂)编辑本段磷脂代谢磷脂代谢(phospholipid metabolism):磷脂在生物体内可经各种磷脂酶作用水解为甘油、脂肪酸、磷酸和各种氨基醇(如胆碱、乙醇胺、丝氨酸等).甘油可以转变为磷酸二羟丙酮,参加糖代谢.脂肪酸经β-氧化作用而分解.磷酸是体内各种物质代谢不可缺少的物质.各种氨基醇可以参加体内磷脂的再合成,胆碱还可以通过转甲基作用转变为其他物质.磷脂合成时,乙醇胺或胆碱与atp在激酶的作用下生成磷酸乙醇胺或磷酸胆碱,然后再与ctp作用转变成胞二磷乙醇胺或胞二磷胆碱.胞二磷乙醇胺或胞二磷胆碱再与已生成的甘油二酯(见甘油三酯的生成)合成相应的磷脂. 编辑本段磷脂的功能磷脂,是含有磷脂根的类脂化合物,是生命基础物质.而细胞膜就由4 大豆磷脂粉 0%左右蛋白质和50%左右的脂质(磷脂为主)构成.它是由卵磷脂,肌醇磷脂,脑磷脂等组成.这些磷脂分别对人体的各部位和各器官起着相应的功能. 人体所有细胞中都含有磷脂,它是维持生命活动的基础物质.磷脂对活化细胞,维持新陈代谢,基础代谢及荷尔蒙的均衡分泌,增强人体的免疫力和再生力,都能发挥重大的作用.概括的讲磷脂的基本功用是:增强脑力,安定神经,平衡内分泌,提高免疫力和再生力,解毒利尿,清洁血液,健美肌肤,保持年轻,延缓衰老. 乳化作用分解过高的血脂和过高的胆固醇,清扫血管,使血管循环顺畅,被公认为血管清道夫.还可以使中性脂肪和血管中积压的胆固醇乳化为对人体无害的微分子状态,并溶解于水中排出体外.同时阻止多余脂肪在血管壁沉积,缓解心脑血管的压力.磷脂之所以防治现代文明病,其根本原因之一,就是在于它具有强大的乳化作用. 拿心脑血管疾病来说吧..日常肉类摄取过多,造成胆固醇,脂类沉积,造成血管通道狭窄,引起高血压.血液中的血脂块及脱落的胆固醇块遇到血管窄小位置,卡住通不过,就造成了堵塞,形成栓塞.而磷脂强大的乳化作用可乳化血管内沉积在血管壁上的胆固醇及脂类,形成乳白色液体,排出体外. 冠心病,结石都是同等道理. 增智人体神经细胞和大脑细胞是由磷脂为主所构成的细胞薄膜包覆,磷脂不足会导致薄膜受损,造成智力减退,精神紧张.而磷脂中含的乙酰进入人体内与胆碱结合,构成乙酰胆碱.而乙酰胆碱恰恰是各种神经细胞和大脑细胞间传递信息的载体.可以加快神经细胞和大脑细胞间信息传递的速度,增加记忆力,预防老年痴呆. 活化细胞磷脂是细胞膜的重要组成部分,肩负着细胞内外物质交换的重任.如果人每天所消耗的磷脂得不到补充,细胞就会处于营养缺乏状态,失去活力. 人的肝脏能合成一些磷脂,但大部分是从饮食中摄取的,特别是三四十岁以后.但是磷脂的活性以25度左右最有效,温度超过摄氏50度后,磷脂活性会大部分失去.因此建议健康的人亚健康的人都可以食用磷脂,会给你带来出乎意料的效果. 编辑本段磷脂的性质物理性质依加工和漂白程度而呈乳白,浅黄和棕色.易溶于乙醚、笨、三氯甲烷、正己烷,不溶于丙酮、水等极性溶剂.属于两性表面活性剂,具有乳化性. 化学性质可进行水解反应,乙酰基化,羟基化,酰基化,磺化,饱和化(氧化使磷脂饱和),活化(引入不饱和基团)等反应. 编辑本段甘油磷脂分类及生理功能甘油磷脂是机体含量最多的一类磷脂,它除了构成生物膜外,还是胆 甘油磷脂结构图汁和膜表面活性物质等的成分之一,并参与细胞膜对蛋白质的识别和信号传导.? 甘油磷脂基本结构是磷脂酸和与磷酸相连的取代基团(X);甘油磷脂由于取代基团不同又可以分为许多类,其中重要的有:? 胆碱(choline) + 磷脂酸 ——→ 磷脂酰胆碱(phosphatidylcholine)又称卵磷脂(lecithin)? 乙醇胺(ethanolamine) + 磷脂酸 ——→磷脂酰乙醇胺(phosphatidylethanolamine)又称脑磷脂(cephain)? 丝氨酸(serine) + 磷脂酸 ——→ 磷脂酰丝氨酸(phosphatidylserine)? 甘油(glycerol) + 磷脂酸 ——→ 磷脂酰甘油(phosphatidylglycerol)? 肌醇(inositol) + 磷脂酸 ——→ 磷脂酰肌醇(phosphatidylinositol)? 心磷脂(cardiolipin)是由甘油的C1和C3与两分子磷脂酸结合而成.心磷脂是线粒体内膜和细菌膜的重要成分,而且是唯一具有抗原性的磷脂分子. 除以上6种以外,在甘油磷脂分子中甘油第1位的脂酰基被长链醇取代形成醚,如缩醛磷脂(plasmalogen)及血小板活化因子(plateletactivating factor,PAF),它们都属于甘油磷脂. 甘油磷脂的合成合成全过程可分为三个阶段,即原料来源、活化和甘油磷脂生成.甘油磷脂的合成在细胞质滑面内质网上进行,通过高尔基体加工,最后可被组织生物膜利用或成为脂蛋白分泌出细胞.机体各种组织(除成熟红细胞外)即可以进行磷脂合成. 1. 原料来源? 合成甘油磷脂的原料为磷脂酸与取代基团.磷脂酸可由糖和脂转变生成的甘油和脂肪酸生成(详见甘油三酯合成代谢),但其甘油C2位上的脂肪酸多为必需脂肪酸,需食物供给.取代基团中胆碱和乙醇胺可由丝氨酸在体内转变生成或食物供给.? 丝氨酸——→乙醇胺——→胆碱 2. 活化? 磷脂酸和取代基团在合成之前,两者之一必须首先被CTP活化而被CDP携带,胆碱与乙醇胺可生成CDP-胆碱和CDP-乙醇胺,磷脂酸可生成CDP-甘油二酯. 3. 甘油磷脂生成 1)磷脂酰胆碱和磷脂酰乙醇胺这两种磷脂生成是由活化的CDP-胆碱与CDP-乙醇胺和甘油二脂生成.此外磷脂酰乙醇胺在肝脏还可由与腺苷蛋氨酸提供甲基转变为磷脂酰胆碱.不同生物合成磷脂酰胆碱的途径有所不同. 2)磷脂酰丝氨酸体内磷脂酰丝氨酸合成是通过Ca2+激活的酰基交换反应生成,由磷脂酰乙醇胺与丝氨酸反应生成磷脂酰丝氨酸和乙醇胺.? 磷脂酰乙醇胺 + 丝氨酸 ——→ 磷脂酰丝氨酸 + 乙醇胺 3)磷脂酰肌醇、磷脂酰甘油和心磷脂述三者生成是由活化的CDP-甘油二酯与相应取代基团反应生成. 心磷脂的另一条合成途径. 4)缩醛磷脂与血小板活化因子? 缩醛磷脂与血小板活化因子的合成过程与上述磷脂合成过程类似,不同之处在于磷脂酸合成之前,由糖代谢中间产物磷酸二羟丙酮转变生成脂酰磷酸二羟丙酮以后,由一分子长链脂肪醇取代其第一位脂酰基,其后再经还原(由NADPH供H)、转酰基等步骤合成磷脂酸的衍生物.此产物替代磷脂酸为起始物,沿甘油三酯途径合成胆碱或乙醇胺缩醛磷脂.血小板活化因子与缩醛磷脂的不同在于长链脂肪醇是饱和长链醇,第2位的脂酰基为最简单的乙酰基. 甘油磷脂的分解在生物体内存在一些可以水解甘油磷脂的磷脂酶类,其中主要的有磷脂酶A1、A2、B、C和D,它们特异地作用于磷脂分子内部的各个酯键,形成不同的产物.这一过程也是甘油磷酯的改造加工过程. 1. 磷脂酶A1 自然界分布广泛,主要存在于细胞的溶酶体内,此外蛇毒及某些微生物中亦有,可有催化甘油磷脂的第1位酯键断裂,产物为脂肪酸和溶血磷脂2.? 2. 磷脂酶A2 普遍存在于动物各组织细胞膜及线粒体膜,能使甘油磷脂分子中第2位酯键水解,产物为溶血磷脂1及其产物脂肪酸和甘油磷酸胆碱或甘油磷酸乙醇胺等.? 溶血磷脂是一类具有较强表面活性的性质,能使红细胞及其他细胞膜破裂,引起溶血或细胞坏死.当经磷脂酶B作用脱去脂肪酸后,转变成甘油磷酸胆碱或甘油磷酸乙醇胺,即失去溶解细胞膜的作用.? 3. 磷脂酶C 存在于细胞膜及某些细胞中,特异水解甘油磷脂分子中第3位磷酸酯键,其结果是释放磷酸胆碱或磷酸乙醇胺,并余下作用物分子中的其他组分.? 4. 磷脂酶D 主要存在于植物,动物脑组织中亦有,催化磷脂分子中磷酸与取代基团(如胆碱等)间的酯键,释放出取代基团. 编辑本段鞘磷脂鞘脂类(sphingolipid),组成特点是不含甘油而含鞘氨醇(sphingosine). 按照取代基团X的不同可分为两种:? X为磷酸胆碱称为鞘磷脂(sphingmyelin)? X为糖基称为鞘糖脂(glycosphingolipid)? 鞘磷脂的合成体内的组织均可合成鞘磷脂,以脑组织最为活跃,是构成神经组织膜的主要成分,合成在细胞内质网上进行.? 以脂酰CoA和丝氨酸为原料,消耗NADPH生成二氢鞘氨醇,进而经脂肪酰转移酶作用生成神经酰胺. 鞘磷脂的分解鞘磷脂经磷脂酶(sphingomyelinase)作用,水解产生磷酸胆碱和神经酰胺.如缺乏此酶可引起肝、脾肿大及神经障碍如痴呆等鞘磷脂沉积症. 编辑本段卵磷脂的功效及其应用 [1]?卵磷脂的生理功能; 1.组成细胞膜,对细胞活化、生存及功能维持有重要作用,尤其是脑神经系统、心血管、血液、肝脏等重要脏器的功能保持、肌肉、关节的活力和脂肪代谢都有重要作用. 2.卵磷脂是神经信使——乙酰胆碱中胆碱的供体,它的多少决定着住处伟递速度快慢、智力是否发达,是否充满精神、活力.它又是脑细胞的组成成分,人脑30%是磷脂. 3.调节脂肪代谢、防治脂肪肝,预防肝硬化、肝癌. 4.良好的乳化特征,可减少和清除血管壁上胆固醇沉积,降低血液粘稠度、改善血氧供应,延长红血球寿命并增强造血功能. 5.药物载体:卵磷脂质体是由脂质双层分子组成的单层或复层泡囊、极适宜在体内降解,无毒性,无免疫原性.作为载体有降低药物毒性、提高疗效、减少副作用和药物剂量的作用. 卵磷脂的应用: 1.健脑益智:卵磷脂被小肠吸收后,能水解出胆碱来,随着血液进入大脑中,与醋酸结合转化为乙酰胆碱,也就是记忆素.它是一种神经传导物质,其含量越高,传递住处的速度越快,记忆力就越强,所以卵磷脂对智力开发和增强记忆力有独特功效,是知识界必备的“脑的食品”. 2.血管“清道夫”:卵磷脂具有乳化分解油脂的作用,可增进血液循环、改善血清质,清除过氧化物,使血液中的胆固醇及中性脂肪含量降低,减少脂肪在血管内壁的滞留时间.促进粥样硬化斑的消散,防止由胆固醇引起的血管内膜操作,卵磷脂对高血脂和高胆固醇有显著的功效,可预防和治疗动脉硬化. 3.防治老年性痴呆症:老年性痴呆又称阿尔茨海默病,是由于脑部血管病变导致脑缺氧,脑细胞死亡致使住处伟递障碍而引起的意识障碍性疾病.补充卵磷脂可提脑细胞中乙酰胆碱的含量,活化和再生脑细胞,从而恢复和改善大脑的功能.所以卵磷脂是脑疾患的物美价廉的功能性食品. 4.防治肝病:人体肝脏含磷5%,如含量下降则磷脂载脂体缺乏,脂肪则易囤积于肝脏形成脂肪肝,进而可能形成肝硬化、甚至肝癌.卵磷脂即有亲水性又有亲油性,良好的乳化特性可使脂肪乳化,因此对防治脂肪肝功效显著. 5.防治胆结石:胆固醇和胆红素的沉积是形成结石的基础,卵磷脂的乳化作用可溶解和阻止它的沉积,从根本上治疗和预防胆结石. 6.防治便秘:磷脂的活化细胞功能可促进结肠的蠕动,并将水分送出肠壁,促进毛细管的畅通.从而消除便秘及由其引起的焦虑和疱疹等症状. 7.良好的心理调和剂:社会竞争日趋激烈,人们长期处于紧张的环境和种种压力下,常患有焦虑、急躁、失眠、耳鸣等症,即植物神经紊乱,通常称为神经衰弱,经常补充卵磷脂,可使大脑神经及时得到营养补充,保持健康的工作状态,得消除疲劳,激活脑细胞,改善因神经紧张而引起的焦躁、易怒、失眠等症. 8.糖尿病患者的营养品:卵磷脂不足,会使胰脏功能下降,无法分泌充分的胰岛素,不能有效的将血清中的葡萄糖运送到细胞中,这是导致糖尿病的基本原因之一.卵磷脂构成细胞膜有接收糖分,并使其顺利排出体外的功能,且有促进胰脏释放胰岛素的作用.因此服用卵磷脂可有效地降低血糖,防治糖尿病. 9.利尿、护肾剂:磷脂有利尿作用,可使细胞内的废物和尿一起排出,有助于保护肾脏. 10.美容、防脱发护发:磷脂中有肌醇成分,有维护毛发的作用.其改善发根微循环的作用也使头发获得足够的营养供给起到保发护发的作用.人体肠内积蓄的废物形成肠毒入血可促生青春痘、雀斑、老年斑,造成肌肤粗糙.磷脂可化解肠毒,并排出体外,故可使肌肤光滑柔润,消除青春痘、雀斑、老年斑等. 11.胎、婴儿神经发育的必需品:孕妇体内的羊水中含有大量的卵磷脂,人体脑细胞约有150亿个,其中70%早在母体就已形成.为促进胎儿脑细胞能健康发育,孕妇补充足够的卵磷脂是很重要的.婴、幼儿时期是大脑形成发育最关键时期,卵磷脂可以促进大脑神经系统与脑容积的增长、发育.

阅读全文

与plasmalogen老年痴呆症相关的资料

热点内容
2017年山东企业退休年龄 浏览:270
骂孩子的父母是一种什么体验 浏览:407
伊宁体检换证在哪里 浏览:51
农村养老需求与对策 浏览:347
马玉涛真的患老年痴呆了吗 浏览:719
上海教师退休年龄2019 浏览:312
人大副职省级退休年龄 浏览:261
老年人自己笑是什么原因 浏览:160
护理80的老人多少钱 浏览:928
老年痴呆一定就是智力残疾吗 浏览:529
老人磕着了去医院挂什么科 浏览:674
关于孝顺的动物故事 浏览:125
重阳节居委走访慰问老人 浏览:612
清明节重阳节七夕节中秋节排序 浏览:116
55岁算老年人嘛 浏览:341
什么叫病程越长越长寿 浏览:311
养老金扣1800 浏览:325
老年痴呆的表现证况 浏览:250
老人家生日买什么吃的好 浏览:275
什么群体比较关心父母养老问题 浏览:980